ORE U-H-81-001

I3

i

CRCULATING COPY
Sea Grant Depository

SIMCON

A Simulation Control e
at Oregon State Universi

Explore reabms qf wonderand
Adventure

NATIONAL SEA GRANT DEPOSITORY
PELL LIBRARY BUILDING
URI, NARRAGANSETT BAY CAMPUS
NARRAGANSETT, R| 02882

ERIC L.BEALS

C.

3

Deparrment of Fisheries and Wild [lfe

Orggm Statre Untversity
1981 |

SIMCON

A Simulation Centrol Language

July, 1981

E. L. Beals
Department of Fisheries and Wildlife
Oregon State University
Corvallis, Cregon

Sea Grant Publication No. ORESU-H}-83-001

Preface.

This is the first of two documents describing the SIMCON system and is further
divided into three parts. Part 1 is directed toward all users of SIMCON and
contains a general introduction and description of the SIMCON system and a
user's guide to running a model under SMMCON. Users need not be familiar with
the FORTRAN programming language to read and use this part. Part 21is a
modeler's guide to SIMCON and is designed specifically to aid the FORTRAN
programmer coanstruct models utilizing the SIMCON language. Part 3 contains

a list of run-time error messages SIMCON is capable of generating. The errors
are described and possible solutions to the errors are discussed.

Address comments and requests for documentation to:

Eric Rexstad

Department of Fisheries and Wildlife
Oregon State University

Corvallis, Oregon 97331

(503) 754-4531

Acknowledgments.

The SIMCON system was originally conceived and designed at the Institute of
Animal Resource Ecology, University of British Columbia, Vancouver, Canada
by Ray Hilborn, Jeffrey Stander, and William Webb. Excerpts are taken
liberally from a paper published in Simulation, vol. 20 (May 1973), 172-175
by Ray Hilborn entitled.é_con:rol system for FORTRAN simulation programming
in the Introduction and System Description sections in Part 1 and the System
Architecture section in Part II of this document.

The SIMCON program was obtained by Dr. A.V. Tyler at Oregon State University,
Corvallis through the courtesy of the Institute of Animal Resource Ecology
and adapted to a CDC CYBER 70 model 73 computer in 1976. Special acknowledg-
ments are due to William Webb who was the author of the first document on
SIMCON at Oregon State University and was responsible for program maintemnance
and upgrades until 1978, and the Sea Grant Program which funded the initial
conversion (under the Pleuronectid Project, Sea Grant no. 04-8-MO1=~144),

SIMCON Error Messages - pages 47-5%, was authored by Eric A. Rexstad, Department
of Fisheries and Wildlife, Oregon State University, Corvallis.

This work is a result of research sponsored by NOAA Office of Sea Grant,
Department of Commerce, under Grant Ro. NA79AA-D-00106 (Project No.
R/OPF-1). The U.S. Government is authorized to produce and distribute
reprints for govermnmental purposes notwithstanding any copyright notation
that may appear hereocn.

i1

Table of Contents

Part I

Part I1

A User's Guide to the SIMCON
Introduction « « +» « « o «
The SIMCON System =« « « = -
Summpary of Commands . . »
Basic SIMCON Commands . . .
System Parameters . . « «

Getting Started .+ « « + » -

« & 5 3 & » ¥ »

Obtaining Output Hardcopy from the CDC CYBER

Advanced SIMCON Commands and
SIMCON Macros « ¢ o + o » =
Command Files .+ + « « & & &
STMCON Comments « « « « «
SIMCON System Commands . +

Miscellaneous Features . « .

Features . .

The FORTRAN Programmer's Guide to SIMCON

System Architecture
Programming Requirements ., .

Optional User Routines . .

« = = » a 3 & @

= 8 * = 4 & & @

SIMCON Files and Unit Assignments

SIMCON Loading and Execution
Program Debugging . . « «

- B & & = = =

- . s 4 . " a

Conditional Attention Interrupts « » « « o &«

The SIMCON Utility Library .

Part III Error Messages « « « « o o

* 8 ¥ = & = = #

L] a = & ® = »

1il

[= AT V. S VAR S

13
16
21
25
26
27
29

31
32
36
39
40
41
42
43

46

Part I. A User's Guide to the SIMCON Language

2 A User's Guide to SIMCON

Introduction.

This guide shows how to utilize the SIMCON command language to
control and monitor FORTRAN models previocusly constructed. Since the
majority of programs will probably be simulation models, the
illustraticns in this manual will be drawn from simulation models now
operating under SIMCON. This guide is mostly concerned with
descriptions of the SIMCON system commands but also included are
sections on how to log on to the CYBER, modes of output, and how to save
and print ocutput. Users are also referred to Part II of this document,
The FORTRAN Programmer's Guide to SIMCON, which describes the system
architecture, programming requirements and restrictions, and the SIMCON
utility library.

SIMCON - A SIMULATION CONTROL LANGUAGE 3

The SIMCON Svstem.

Computer based simulation modeling often times requires real-time
interaction between the model user and the model itself. A major
portion of programming effort in interactive digital simulation is
usually involved with methods of altering and viewing variables as the
simulation proceeds and with obtaining graphical or other forms of
output from the program. The SIMCON system has been made completely
independent of the model and is capable of handling all input, output,
and intervention needs. This can reduce programming and debugging time
significantly. Also, any previously programmed self-contained model can
be run on the SIMCON system with a minimum of alteration and effort.

The SIMCON system is primarily useful with models that simulate
discrete time systems. 1Its application is thus different from the event
oriented simulation systems such as GASP or SIMSCRIPT and continuous
system simulation aids. All user programming is done in FORTRAN. The
user interacts with the program through very simple commands, of which
only two are sufficient to run a model and view its results.

The SIMCON system was conceived and developed with three goals in
mind:

1. Selected variables can be viewed as simulation is proceeding.

2. The simulation may be stopped at any point, any variable
displayed or modified, then the simulation resumed from the
point where it was left.

3. Any variable can be viewed after simulation is complete.

Features of the SIMCON system are:

1. SIMCON contains a set of commands which provide for user
control and monitoring functions.

2. Variables may be displayed or modified by name (the SET and
DISPLAY commands).

3. Selected variables may be viewed during simulation (PLOT and
UNPLOT commands) . :

4. Any variable may be viewed after simulation (PRINT, VIEW, and
GRAPH commands) .

5. Since FORTRAN variables are accessible by name, SIMCON is very
handy for debugging programs.

lo.

11.

12.

13.

A User's Guide to SIMCON

Printer and line plotter displays may be obtained on any of the
remote terminals supported by CYBER as well as the central high
speed line printer. Graphics displays can be produced on any
remote graphics display device supported by the CYBER COMPLOT
graphics package such as any Tektronix terminal or plotter and
also the Gerber flatbed plottar.

At the option of the user, SIMCON has the capability to restore
the state of the model to any previous point in simulated time
(the TIME command). For example, while simulating £from the
year 1980 to the year 2000, the user may stop at 1990 and
explore several alternatives from 1990 to 2000 without having
to restart the model from 1980 each time. The user may also
return to the initial state of the model from any point without
having to use expensive PORTRAN input/output to reread initial
values.

Beginning and ending time periods are easily specified for a
simulation run {the SIMULATE command).

Synonyms may be defined for FORTRAN variable names. For
example, the variable BARO can be referred to by the more
descriptive name BAROMETRIC-PRESSURE.

A series of SIMCON commands may be stored on a file and
executed as a group (BATCH files). A BATCH file is a
convenient way to initialize variables.

SIMCON commands may be combined into groups called macros.
These macros can be created and executed interactively to
automatically perform combinations of functions and can be
conveniently maintained on a permanent library file.

Commands may be defined to intervene at a specified point in
simulated time. Such a command may automatically alter a
variable at a given point in the simulation (AT commands).

The SIMCON system has the ability to call user provided
subroutines upon command. The programmer may write his or her
own special output zoutines or provide instructions or
promptings to novice users.

SIMCON - A SIMULATION CONTROL LANGUAGE

A Summary of Commands and Abbreviations.

Command

AT
CALL
CLEAR
COMMAND

CONTINUE
DISPLAY
FILE
GET

GO
GRAPH
HDUMP

INITIALIZE

MACRO

NAME
ONSTAT

PLOT
PRINT

QuUIT
READ
RESET
SAVE

SET
SIMULATE
STATS

TIME
UCOMAN
UNPLOT
VIEW

Abbr.

A
CA
CL
COM

(=)

Description

Specifies a future intervention.

Calls a SIMCON macro explicitly.

Clears the output work area.

Defines an alternate name for a SIMCON or user
command.

Resumes the simulation.

Displays the value of a variable.

Writes output onto a file.

Gets a variable for viewing.

An alternate form of the CONTINUE command.
Produces a graphics display.

Displays variable attributes and the symbol
table (primarily for debuagging).

Calls the user's initialization subroutine.
Allows the user to create a SIMCON macro as a
set of other SIMCON commands.

Defines a synonym for a variable name.

Defines a list of variables on which to perform
simple statistical monitoring during simulation.
Provides for automatic output to be generated
for selected variables during simulation.
Produces a table of the values of variables
across time.

Terminates SIMCON execution.

Causes commands to be read from a file.
Restores a system state previously saved

Saves the current system state.

Changes the value of a variable.

Sets simulation times and starts the simulation.
Produces a statistical summary of variables over
time.

Restores any model state.

Calls a user defined command subroutine.
Reverses the action of the PLOT c¢ommang.
Produces a printer plot display.

Page

6 A User's Guide to SIMCON

Basiec SIMCON Commands.

All that is necessary to manipulate a model are a means of iterating
the model a specified number of times and of setting and displaying the
values of variables. The following discussion describes the simplest
and most basic set of SIMCON commands sufficient for the usual needs of
simulation modelling.

Variable Naming Conventions. Many SIMCON commands reference the
values of the FORTRAN variables of the model program. Both subscripted
variables (arrays) and non-subscripted variables (scalars) may be
referenced in commands. For example, the command "DISPLAY XVAL" would
cause the value of the variable XVAL to be displayed at the terminal.
Single elements of subscripted arrays are referenced in standard FORTRAN
notation (see examples below). Subscript ranges may also be referenced.
The follwing examples are all legitimate methods to reference variables:

the command: references:

DISPLAY PQP(10,2) the single element in column 10 and row 2
of the array POP

DISPLAY MAX(ALL) all the elements of the singly subscripted
array MAX :

DISPLAY SURF(5...10,ALL) all the elements in columns 5 through 10
inclusive

DISPLAY MAX(10) the tenth element only

DISPLAY MAX the first element only

Any combination of the above referencing methods may be used.

The Basic SIMCON Commands.
SET variable=value

The named variable is set to the specified value. The value may be
an integer or a real number or one of the special mnemonics "ON" and
"OFF". Examples:

SET XVAL=1.7
SET MAX(10)=23
SET IFLAG=ON
Also,
SET FTYPE(l...5)=1 2 3 4 S
will set the first 5 elements of the array FTYPE.

SET POP(l...5)=10 20 30

SIMCON - A SIMULATION CONTROL LANGUAGE 7

assigns the first 5 elements of the array POP to the values 10 20 30
30 30. Note that the last value is repeated until all the elements
are filled. A value may also be repeated using the "*" character.
The following two commands have identical results:

SET MAX(1l...10)=3%1 3%*2 3#%3 4
SET MAX(l1...10)=1 1122 2 3 3 3 4

In the SET command, the words “ON" and "OFF" are synonyms for the
values 1 and 0, respectively. Also, the word "ALL" may be used to
specify array elements. More examples:

SET POP(ALL)=0

SET MAT{ALL,4...6)=1

SET INUM(1,1,l...4)=1 2 3 4

SET VAL(1,l1...3,1...3)=3%2.6 3*7.2 3*8.9

In the last example, the elements of the three dimensional array VAL
are filled such that the left most subscript changes through its
range most quickly (in column major order). Note that nine elements
were referenced and assigned values.

DISPLAY variable(s)

The current values of the named variables are displayed at the
terminal. For example, elements from three variables (two arrays
and a scalar) are displayed by the following command:

DISPLAY MAT(1l,ALL) XVAL MAX(l...1l0)
(See also examples on page 6.}
SIMULATE (FroM] i [TO] 3

causes the model to be iterated and produces a simulation run. The
symbol i represents the first year that is to be simulated -- or the
yvear of the first iteration. The symbol j represents the last year
of the simulation. The portions in brackets are optional and may be

omitted.
A convenient alternate form of this command is:
SIMULATE [TO] j

which assumes that the first year is 1 and the last year is Jj. Some
examples:

SIMULATE FROM 1966 TO 2000
SIMULATE 20

8 A User's Guide to SIMCON

SIMCON "remembers® all the intermediate states of a simulation. The
following output commands will allow the user to see the values of
the variables as they have changed over the simulated time.

PRINT variable(s)

outputs a table of the values of the named variables over the
gsimulated time. Example:

PRINT POPULATION MORTALITY CATCH CATCH-PER-EFFORT

VIEW variable(s) [MAX=value]

produces a printer plot of the named variables over the simulated
time. The optional MAX specification scales the plotting axis. if
a maximum is not specified, a maximum is computed for each variable.
Example:

VIEW FPOP YIELD MAX=lE6

The expression "1E6" is a short-hand notation meaning 1 times 10 to
the 6'th power (1 million). An example of VIEW command output is

shown in fiqure 1.1, page 14.
GRAPE variable(s) [MAX=value]

produces a graphics display of the named variables against simulated
time for any device supported by the CYBER COMPLOT graphics package.
These include all Tektronix graphic terminals and plotters and the
centrally located GERBER flatbed plotter, as well as others.
(Consult the CYBER COMPLOT User's Manual available at the 0.S.U.
computer center for more information about the graphics devices
supported by COMPLOT.) See also Obtaining Qutput Hardcopy from the
CDC CYBER, page 15. Example:

GRAPH OBSERVED PREDICTED MAX=10000

GRAPH variablel VS variable2 [PENsvalue]

This special form of the GRAPH command permits plotting one variable
against the other rather than against time. Variablel is plotted on
the Y axis against variable2 on the X axis. The plotting scale is
automatically determined for each variable. The option "PEN=Q"
displays the data as unconnected points. "PEN=1" connects the
points by lines in the order they were generated by the simulation.
Example:

GRAPH SPAWNERS VS RECRUITS PEN=l

SIMCON - A SIMULATION CONTROL LANGUAGE 9

TIME i

resets the model to a previous state. The symbol 1 may represent
any time or year previously simulated. Examples:

TIME 1
TIME 1957

TIME 0

Very often, the initial model state before simulation is desired so
that a model user may change parameters to prepare for a new
simulation run. This command always refers to the initial (or
"zaro'th") state irrespective o¢f the units of simulated time
(whether they be years or simple iteration counts). For example,
the following sequence produces a simulation run of 20 years between
1960 and 1980 then returns to the initial state:

SIMULATE 1960 1980
TIME C

CONTINUE [TO] 3

is an alternate form of the SIMULATE command which is particularly
useful in respect to the TIME command. CONTINUE simulates from the
current state (the ending state of the last SIMULATE or CONTINUE
command or a state set by TIME} to the year J. If j is not
specified, CONTINUE considers the current state the "zero'th" state
of a new simulation and iterates to the ending year specified on the
last SIMULATE or CONTINUE command.

GO 1

A command similar to CONTINUE, GO iterates the model from its
current state exactly i iterations. Note that i is not the value of
a year but the number of years to iterate beyond the current state.
If i is omitted, 1 is assumed.

AT time command

This command will interrupt the next simulation at "time", execute
"command", then resume the simulation. The AT command is useful to
alter a model parameter with a SET command in the midst of a
simulation. The word "ALL" may be used to specify that the command
is to be executed between every time step of a simulation. Up to 20
different AT commands may be in effect at one time. Examples:

AT 5 SET F=.7
AT ALL SET GRO=1

10 A User's Guide to SIMCON
Most SIMCON commands may be used in AT commands. However, the
commands SIMULATE, CONTINUE, GO, TIME, or another AT command should
not be used since they would have little meaning in this context.
The PRINT, VIEW, GRAPH, and FILE commands should be aveoided as well.
(The PLOT command is much better suited for these purpcses. The
PLOT and FILE commands are discussed in Advanced SIMCON Commands and
Features, page l6.) Also, a command such as "AT ALL DISPLAY ..."
is very inefficient and should be avoided in preference to the PLOT
or PRINT commands.

AT LIST
lists all AT commands currently in effect.

AT CLEAR
deletes all current AT command.

QuIT

terminates SIMCON execution. To restart the program, type the
command "SIMCON" in response to the system prompt "/". The model
can be reset to the state where it was left by using the TIME

command.

SIMCON - A SIMULATION CONTROL LANGUAGE 1l

System Parameters.

SIMCON uses several internal system parameters as pointers, flags
defaults, etc. The following is a partial 1list of SIMCON system
parameters which may be relevant to a user's particular application.
All SIMCON parameter names begin with the sharp sign (#), and they may
be displayed or modified by DISPLAY and SET commands in the manner of
any other program variable.

$#DEFMAX
is the default plotting scale maximum used for variables in the
plot queue. (The plot queue is discussed in Advanced SIMCON
Commands and Features, page 16.) The default value is 100.

$#IBAUD
This parameter has meaning only for graphics output to remote
graphics terminals and represents the transmission rate to the
terminal. It used by the graphics display routines to
calculate delay times. The default value is 1200 baud.

IDUMP
is a switch that when ON (set to 1), SIMCON stores all

intermediate model states on a scratch file. This makes all
the states of a simulation run available to output and other
commands such as PRINT, GRAPH, and TIME. The default is ON.

$#IGPLT
contains the output method code for the variables in the plot
queue:
1 output a printer line plot (default) (VIEW)
2 output a table of values (PRINT)
3 output a graphics display (GRAPH)
4 not used
5 output a table to the file UFILE (FILE)
$#IPLDEV

contains the code defining the graphics output device:
Tektronix terminal (default)

not used

GERBER flatbed

both Tektronix terminal and the GERBER flatbed

LRV SN o

#IYBEG
is the base year for the simulation. The SIMCON command

SIMULATE sets this parameter. The default is 0.

$IYEAR
is the current year of the simulation. This parameter is

incremented during the simulation.

12

A Usger's Guide to SIMCON

#IYEND
iz the last year of the simulation. The SIMCON c¢ommands

SIMULATE, CONTINUE, and GO set this parameter.

$ LOGUNT
contains the logical output unit number for PRINT and VIEW

command output. Valid unit numbers are 6, the terminal (file
OUTPUT); 45, file ULOG; 46, file UFILE. The default is unit 6.

$MODTEK
is the Tektronix model number. This parameter has meaning only
for graphical output to a Tektronix terminal. The default |is

the Tektronix model 4010.

$NLINE
is the number of characters per line used for the printer line

plot display. The default is 60 characters.

$NPLOT
is the number of variables currently in the plot queue.

#$NYSKIP
is the iteration interval at which model states are saved if

and only if the system switch #IDUMP is ON. The default value
of 1 causes model states to be saved for every time step of the
simulation, #NYSKIP=2 means every other time step, etc.

§PLTMAX (20)
contains the plotting axis scaling maximum for each variable in

the plot gueue.

SIMCON - A SIMULATION CONTROL LANGUAGE 13

Getting Started.

To use SIMCON to run a model and obtain meaningful output, the user
must have some knowlege of the model in general and its most important
variables in particular. This section is intended to assist users new
to the CYBER begin the log-in process (initiate communication with
CYBER) and run the demostration model provided as an example (figure
1.1, next page). To run other models, new users should find that their
instructors or the model programmer have provided the specific
instructions necessary.

Figure 1.1 illustrates the log-in sequence and a sample run on a
terminal that is connected to the computer via a direct line (a terminal
which does not need to communicate over a telephone). Most wusers will
probably have access to such terminals so only this one example will be
given.

The first step is to make sure that the terminal has the power
turned on and the switch marked LOCAL/LINE set to LINE. On some
terminals, this may be marked TERM, TERM READY, DATA, or AUTO ANSW. To
begin the log-in sequence, push the return key. The system should
respond with a minus sign (-). Type NOS and again push the return key.
The system will then ask for four indentifiers. These identifiers,
which include a user account number, password, charge number, and
project name are required by the system in order to log-on successfully.
The identifiers are assigned to every CYBER user and are designed to
facilitate accounting and preserve user privacy. Enter the appropriate
number in the blacked-out area when requested and end each line with the
return Kkey. When the computer is ready to receive your input, it will
prompt you with the symbol "/". Now, you may repeat the demonstration
shown in figure l.1 or you may experiment to familiarize yourself with
the SIMCON system. To end a terminal session, type BYE.

12 ' ' A User's Guide to SIMCON

FPigure l.1. A log-in and sample SIMCON run. All user responses are
underlined. DEMO is a procedure which links the demonstration model to
SIMCON and is model specific. (The model and the DEMO procedure are
shown in detail in Part II, page 34.) Generally, the instructor or
model programmer will supply a similar procedure to run a particular
model. New wusers are especially encouraged to repeat and experiment
with this demonstration at their own terminals.

e Your account numben.
81702713, 12.23.41. T) .
:gkl 4 Jo, Tgpe your prasword in e blacked out

PALSuE) arner pwvided by the computer.

{E’Jé&‘mgf'mm,——— Type the wtma.' "CHARGE".

Y reaaaan — «Your charge number goes here.
PROJECT NONBER:
1 wesssmaansamn————~And your project name.
oo i, e T sty ae
Lo ﬁg‘:,y odash 2o " ERERT. SIACON SEAGNETRNTION READT # .
' "SiNCa% coc vemsTom 2.5.7 This command invokes the SIMCON dyotem.

. . THIS 18 & 3IMPLE POPULATION GROUTH MODEL USING
that the computer io THE CLASBICAL LOGISTIC FUNCTION,

neady to accept youn /DT & RM(K=H)/K

mrlfd. VARLABLES
POF CURRENT MUNBER OF ANIMALS IN THE PQPULATIEN (N)
R CONSTANT OF PROPORTIOMALITY (INTRINSIL RATE OF INCREASE)

CARRY THE CARRYING CAPACITY (K}
YIELD SURPLUS PRODUCTION, N(T+1) = N(T)

T DISPLAY POP R CARRY
PP - 2.000000
. 000000
CARRY = 140. 0000
'

Y SIMLATE | 19
ki U[EU i [ZI§LD HAX=»100
1

VARIARLE 1t 18 POP RAX = 106,
VARIABLE 2 IS YIELD MAX = 104,
LRUAXAALL L XAXAALAAL X LAXLAAXL 4 XXAXKAXLL A XX XXX AL # XAXXLAAX L+

84 A

i

a 21

il 2 ¢

41 2 1

b} bl }

al] 1

b 2 1

ai s 1

¥l 2 :

101 2 t

Ve need noi aiop here. i 2 {

121 2 1

e e dome 131 2 1
i t:‘lang. 1

141 2

model parametens on 151 2 1

T oyt

initial conditions T.289 CP SECONES EXECUTION TINE.

/

with “SET" commands and
continue aimulaiionas.

SIMCON - A SIMULATION CONTRCL LANGUAGE 15

Obtaining Qutput Hardcopy frem the CDC CYBER.

Output of printed tables or printer plots may be written to a file
then routed to the central line printer. While in the SIMCON system,

issue the the following commands:

SET #LOGUNT=45
PRINT POP(l...10)
QUIT

"y Ml s}

/TITLE, DUMMY. /MYNAME
TITLE COMPLETE.
/REWIND, ULOG
$REWIND, ULOG.
/COPY, ULOG, DUMMY
EQI ENCOUNTERED.
/ROUTE, DUMMY , DC=PR
ROUTE COMPLETE.

Define the output unit as the file ULOG,
list the variables of interest, then
exit SIMCON and issue the following CYBER

commands :

Label a dummy file with your name.
Rewind the output file, ULOG.
Copy the output to the dummy file.

Send the file to the line printer.
Your SIMCON output will be filed under your

name (the name given on the TITLE command) at the computer center's I1/0
counter. Just ask for it by name.

Sending graphical output to the GERBER plotter is done in much the
same way as routing output to the printer:

? SET #IPLDEV=3
? GRAPH PCP(5...10)}
? QUIT

/TITLE,DUMMY,DC=GB, I
? JOHN Q. PROGRAMMER
? 000000

1 PLOT 12 BY 18 IN.

LIV IR TS |

TITLE COMPLETE.
/REWIND, TAPELGC
$REWIND, TAPELO.
/COPY,TAPEL1Q , DUMMY

ECI ENCOUNTERED.
/ROUTE, DUMMY , DC=GB

ROUTE COMPLETE.

Select the GERBER plotter.

Provide the following label information:

your name,
your charge number, and

number of plots desired and the dimensions
End input with a return on an empty line

SIMCON wrote the graph on the file TAPEL(
automatically for you.

Route the file to the GERBER plotter.

18 A Usger's Guide to SIMCON

Advanced SIMCON Commands and Features.

After some familiarity with SIMCON is gained, these commands and
features should prove highly useful. Generally, the user should also be
familiar with the CYBER file structure of local and permanent files.

STATS variable(s) [LO=value] [HI=value]

will produce a simple statistical summary of the named variables
over the simulated time. The optional LO and HI values specify the
lower and upper bounds of the simulated time for which the summary
is to be made. The statistics computed are the maximum, minimum,
mean, variance, standard deviation, and the standard error of the
mean. Example:

STATS RAINFALL TEMPERATURE LO=1900 HI=1920
ONSTAT variable(s)

places the named variables into a queue. Statistics for these
variables will be computed and output automatically after any
subsequent simulation. If no variable list is given, the queue is
cleared.

PILE variable(s) [FORMAT=(fmt)]

Similar to the PRINT command, FILE cutputs a table of values without
column headers onto the file UFILE. This command is useful where
data generated by a simulation run are to be analyzed separately at
a later time. The optional FORMAT specification allows the user to
supply an alternate format other than the default (the default
format is 10G12.5). The output format specification, "fmt" should
be structured as in standard FORTRAN . notation or the special
mnemonic "U" may be used to specify unformatted binary output. The
format conversions that may be used are E, F, G, and A. Integer and
variable type conversions cannot be used. Consult the NOS FORTRAN
IV Reference Manual for more details about format conversion types.
The parentheses enclosing "fmt"™ are optional. Example:

FILE VARl VAR2 VAR3(l...3) FPORMAT=(F6.2,E10.3,3F8.5)

GET variable(s)

This command reads the values of the named variables from the common
block scratch file into a working area in central memory. The
principle advantage of this command is that it allows for direct
comparisons of variables from more than one simulation. Each GET
command appends its variables to the working area up to a maximum of
10 variables. Then, a PRINT, VIEW, or GRAPH command which does not

SIMCON - A SIMULATION CONTROL LANGUAGE 17

have a variable 1list displays all the variables currently in the
work area. Figure 1.2, next page, illustrates how variables from
different simulation runs may be compared directly using the GET
command.

Incidentally, all ocutput ccmmands except STATS and DISPLAY use
this working area as a buffer space. A GRAPH command with a list of
variables, for example, can be given, then the same display can be
regenerated for another graphics device by repeating the GRAPH
command without the variable list. This avoids costly accesses to
the scratch file.

CLEAR
clears the working area used by output commands.
PLOT variable(s) [MAX=value]

The PLOT command places the named variables into a special plotting
qgueue. buring a simulation run, output to the terminal is
automatically generated for all variables in the queue. The method
of output, whether a printed table, printer line plot, or graphics
display, can be selected by setting the system variable #IGPLT to
the an appropriate code (see System Parameters, page 11). The
optional MAX specification scales the plotting axis for printer
plots and graphic displays. If a maximum is not specified, the
system parameter $#DEFMAX is used. Each PLOT command will add its
variables to the gueue up to a maximum of 20 variables. Example:

SET #IGPLT=1l
PLOT POP{l...5) MAX=500

The PLOT command has the advantage of viewing simulation results in
progress rather than accessing the common block scratch file after
simulation is complete. For very large models, this can be a
significant savings.

UNPLOT variable(s)

reverses the action of the PLOT command for the named variables.
INITIALIZE Command.

Frequently, it may be desirable to re-initialize a2 model with the
user supplied subroutine UINIT. The INITIALIZE command has this
functien. If no subroutine UINIT has been supplied, INITIALIZE has
no effect. The UINIT subroutine is discussed in Part II, section
Optional User Routines, page 36.

A User's Guide to SIMCON

" Figure 1.2. Here, two simulation runs are made with one parameter

changed and the results of an ocutput variable are compared. This
example was produced using the model PISCES (from User's manual for

PISCES: a general f£fish gggulation simulator and <fisheries game

program, Environment Canada Fis erles and Marine Service, Tech.

Rept. 480 by A. V. Tyler).

AT 10 SET BDATS=3000 Generate a simulation run then get the
SIMULATE T0 30 variable FPOP (the total number ¢of animals
GET FPOP in the population). Then go back to an
TIME 10 intermediate state and reset the model
SET DOATS=46000 parameter BOATS, the quantity of fishing
CONTINUVE TO 30 ' effort {(measured in boat-days).

GET FPOP Get the variable FPCP from the second run,
VIEW plot, and compare.

ool od el P) o e)

VARIABLE 1 IS FPOP HAx = »321E+08
YARIABLE 2 15 FPOP MaX = .521E+08
XAXXXXXAXXFXAXAXXAXXFXAXLLXX XL XXAXLK XKL FAXXX XXX XA $XXXXXX AL+

01 ¥
11 *
34]
31 *
41 *
91 *
41 *
71 %
81 '
1 *®
101 *
111 2 1
121 2 1
131 2 1
141
151 2 1
141 2 1
121 2 1
181 2 1
191 2 1
201 2 1
211 2 1
221 2 1
231 2 1
24} 2 1
231 2
241 2
271 2
281 2
291
301

2%]

— el o o ol -

STMCON - A SIMULATION CONTROL LANGUAGE 19

Defining Variable Synonyms, the NAME command.

The NAME command enables the user to define a synonym of up to 20
characters for a model variable. The wvariable may then be
referenced by either name. Any character is legal in a synonym
except imbedded blanks and the special characters t,;:#S . The form
of the NAME command is,

NAME oldname newname
For example, the command,
NAME POP POPULATION-SIZE

will allow the model variable POP to be referenced by the name
POPULATION-SIZE. Descriptive names such as this may be helpful and
pleasing to the eye when they appear on DISPLAY or PRINT tables.
Arrays, parts of arrays, or single array elements may also be given
synonyms.

This command requires that sufficient space be reserved in
SIMCON's symbol table. The default table size allows for 166 model
variables and synonyms which is probably more than adequate for most
SIMCON applications. Since this 1is a programming consideration,
this subject is discussed further in Part II, Optional User
Routines, page 36.

User Defined Commands.

These commands perform user defined functions and are used in the
same manner as the regular SIMCON commands. SIMCON provides for up
to 7 user defined functions. The command functions are supplied by
FORTRAN subroutines which are compiled with the model and linked
with SIMCON at execution time. (See Part 1II, Optional User
Routines, page 36.) The commands are: UCOMAN, UCMD2, UCMD3, UCMD4,
UCMD5, UCMD6 and UCMD7.

Renaming SIMCON Commands.

SIMCON commands may also be given new names. These may be of up to
20 characters but must not include imbedded blanks or any of the
special characters [,;:#S]. This feature should be especially
useful with the user commands described above. Macros should not be
given names that are defined as SIMCON commands or visa versa for
when a macro call by name is issued, SIMCON searches its command
list first. (Macros are discussed on page 21.) Using the CALL
command avoids this difficulty since SIMCON presumes the name is a
macro. The command has the form,

COMMAND oldname newname

20 A User's Guide to SIMCON

HOUMP [n]

This command is primarily a debugging aid for model programs. It
produces a catalog table of the variables in the model common block
and the SIMCON utility common block. Included is information on the
common block displacement of each variable, the variable length,
maximum subscript sizes, and the variable type. The opticnal
parameter n specifies the block to catalog: 0, both the model
{user} and SIMCON common; 1, the model common; 2, the SIMCON common.
The default is 1.

SAVE

atores the current SIMCON system state on the file SYDUMP. The
SIMCON gaystem state includes all system parameters (some of which
are listed on page 1ll) and the symbol table (mentioned in
conjunction with the NAME command, page 19 and discussed in more
detail in Part II, Optional User Routines, page 36).

During SIMCON initialization, considerable execution time is
devoted to the building of the symbol table and its associated
parameters from the programmer supplied information contained in the
file COMMON. (See Part II, Programming Regquirements, page 32 for a
discussion of the files associated with building the symbol table.)
After this table is constructed, the SAVE command stores the table
on a file so that during later SIMCON runs with the same model, the
cost of construction can be avoided. This savings can be very
substantial if the number of model variables is 100 or more.

RESET

restores the system state saved by the save command.

SIMCON - A SIMULATION CONTROL LANGUAGE 21

SIMCON Macros.

Definitions. A SIMCON macro is a user defined collection of SIMCON
conmands assigned an identifying name. The commands forming 2 macro are
executed as a unit by simply entering the macro name as if it were a
regqular SIMCON command. Macros can provide a convenient means to
quickly and accurately initialize a model for different types of
simulation runs. They may also be used to execute often repeated
command sequences or, in the case of a model wused for instructional
purposes, may contain explanatory comments to the user {(see SIMCON
Comments, page 26). A macro of this type might be named "HELP".

A macro is defined by the command,

MACRO name [Pl P2 ... P10]

where,
name is a character string of up to 20 characters identifying
the macro. Letters, numbers, and symbols may be used in a
name except blanks, commas, colons, or semi-colons. The
characters # and $§ may be used but must not be the first
character of the name.
Pi is one of up to 10 parameters that may take on one of the

following forms:

K a key-word name of up to 10 characters. A key word
is a name used inside the text of a macro for which
we may wish to substitute the name of a variable,
symbol, or value when the macro is executed. The
characters comprising a key-word name may be
letters, numbers, or symbols except those mentioned
above.

K=D a key-word K that is to be assigned the value or
string D by default. Default assignment in this
context means that the value or string D 1is
substituted for the key-word name K wherever K
appears inside the macro text if the user makes no
other explicit assignment to K when the macro is
executed. (Explicit key-word assignment is
described in more detail below.)

K= a key-word assigned to "null" by default i.e. the
key-word is to be deleted from the macro text
before execution if no other explicit assignment is
made to K.

22 A User's Guide to SIMCON

A macro is executed by the command,

— — —

CALL name {P1 P2 ... P10]

where,
CALL is an optional item of the command,
name is the name assigned to a macro, and
Pi is an optional parameter of cne of the following forms:

A a value or character string to be substituted for
the key-word Ki in the order it appears on the
macro definition statement,

K=V where V is a value or string to be substituted for
the key-word K,

K= key-word K is to be deleted from the macro text.

When a macro is called by a command <f the form,
CALL name V1 V2 ... V10

V1l is substituted for key-word K1 on the macro definition statement, V2
for K2, etc. The parameters on this command are are order dependent.
Example:

RATES .5 .1 .125 .05 .225
If a macro is called by,
CALL name X1=V1 R2=V2Z ... K1l0=V1l0

where Vi is either absent (null), a character string, or a value and Ki
igs the name of any key-word on the macro definition statement, V1 is
substituted for Kl regardless of the order in which the key-words Ki
appear. The parameters of this command are order independent. Example:

PLAN TYPE=]1 VAR=FLEET

In general, order independent and order dependent forms ought not be
mixed. However, order independent parameters may follow order dependent
parameters on the CALL command but order dependent parameters should
never follow order independent parameters.

SIMCON - A SIMULATION CONTROL LANGUAGE 23

Macro properties and limitations. Macros are easily defined from
text Files (see Command Files, page 25) or created interactively and are
stored on a random access file which may be permanently maintained on
the user's account. Any previously defined macro contained on this
file, called the SIMCON macro library, is automatically available for
direct use during any SIMCON run. A macro library created during one
SIMCON run may be saved and used in any other SIMCON run at any time
without special attention; the user simply gets the library as a local
file either before SIMCON is executed (see SIMCON Loading and Execution,
page 40) or during SIMCON executicn with the SIMCON SGET command (see
SIMCON System Commands, page 27). A new library may also be used by
issuing another S$GET command. Some simple macro examples are shown on
figqure 1.3, next page.

Macros may be nested (macros may reference other macros}. While
there is no arbitrary limit to the degree of macro nesting, each macro
"call® increases the demand on the central memory allotted to macro
execution (the actual amount depends on exactly where a macro call
occurs inside another macro). If a memory overrun occurs, SIMCON issues
an informative message and stops macro execution.

A macro library may contain up to 64 individual macros and each
macro may consist of from approximately 60 to 100 SIMCON comnands
depending on the length of each command. By "echaining® macros (the last
command of a macro being a call to another macro), the effective length
of a macro can be increased. 1In this case, there would be almost no
chance of a memory overrun since for each command executed, that memory

space is freed.

There is no provision in SIMCON to edit a macro, however, a macro
may be redefined by simply creating a new macro with the same name.
Unfortunately, the macro library cannot be edited on any CYBER text
editor (EDIT or XEDIT). Users may find it more convenient to define or
redefine macros in command files which are easily edited. (See Command
Files, page 25.)

Any SIMCON command may be contained in a macro except another macro
definition statement.

24

Figure 1.3.

A User's Guide to SIMCON

Some macro examples.

? --DEFINING A SIAPLE MACRO

? HACRO RUNI
ENTER MACRO TEXT
TGO

? DISPLAY PROGRAM COST YEARS TOTAL
7 DISPLAY YIELD EFFORT CPUE SuM

7 BISPLAY RECRUITS
T END

ENTER COMMAND
¥

7 --CALLIHG A MACRO BY NAME

7 RUN3
PROGRAM
cosT
YEARS
TOTAL
YIELD
EFFORT
CPUE
sui
RECRULTS

3.000000

The following commands form the macro RUN3.

END {or from an interactive terminal, a
return on an empty line) terminates the
macro definition.

SIMCON looks up the macro RUN3 and executes
it.

+2400000E-01

3.000000

«72000Q0E-01

475.3390
3000.000
158.413¢0
1994.490
8700827.

* --4 HACRO WITH PARAMETERS

? HACRO SETVAL X Y
ENTER MACRO TEXT

? SET XvaL=X

? SET YvaL=Y

7 DISPLAY XVAL YVAL

? END

ENTER COMNMAND
?

7 SETVAL 1.3 10¢
XVAL

TVAL
?

1.500000
$100.0000

Define the macro SETVAL with parameter
key-words X and Y.

Execute the macro SETVAL.

SIMCON - A SIMULATION CONTROL LANGUAGE 25

Command Files.

A command file is a user defined set of SIMCON commands sStored as
text on a file. A command file may be conveniently used to initialize a
model before the first simulation run. In this case, the file need only
be provided as a local file with the name BATCH and SIMCON will
automatically read and execute the commands during the initialization
process. (See SIMCON Loading and Execution, page 40.) Command f£iles
differ from macros since it is not possible to pass parameters or create
them interactively while running SIMCON and since each command file must
be maintained as a separate permanent file. They are, however, ideal
places to perform model initializations, define macros, or entire macro
libraries. (Macros and macro libraries are discussed on page 21.)
Also, they may be of virtually unlimited length.

Command files are explicitly executed by the READ command which has
the general form,

READ pfn [/UN=user no]

where "pfn" is the name of an indirect access permanent file. The
portion in brackets is optional and can be used to specify that the file
is on an alternate user account (the file must be public). If "pfn” is
not specified, the READ command will cause SIMCON to rewind then reread
the last command file processed (permitting reinitializing via the same
BATCH file). The action of this command is to first perform the
equivalent of a system "GET" control statement {(only when a "pfn" file
name is given) which equates "pfn" with the file name BATCH. The effect
is, "GET,BATCH=pfn". The SIMCON command "READ BATCH" is permitted and
results in the equivalent of the system control statement
"GET,BATCH=BATCH". {Note that this is pot equivalent to the READ
command without a "pfn" file specified.)

Caution: Wwhen a "pfn" file name is provided, the READ command will
return or destroy the local BATCH file. If there is no
permanent copy of the local BATCH file and the user wishes
to preserve it, the user must use the SIMCON "SSAVE"
command before issuing the READ command. (See SIMCON
System Commands, page 27.)

A command file may contain any SIMCON command including calls to
macros except that it may not contain, or in any way encompass, another
READ command (as for an example, a command file calling a macro which
contains a READ command). A READ command encountered while a command
file is being processed may produce unexpected results.

26 A User's Guide to SIMCON

SIMCON Comments.

Part of the usefulness of SIMCON macros and command files is the
ability to provide explanatory messages to SIMCON users. This is
particularly true when a simulation model is being used ir a classroom
or for demonstration purposes. There are two types of comments. One
type is always echoed at the terminal when encountered in command files
or macros. The other type is not echoed. The echced comment type is a
line of text prefixed by two periods (..) in columns 1 and 2. The
non-echoed type 1is preceeded by two dashes (--) or a single asterisk
(*y. (This latter character is provided for compatability with certain
CYBER system utility functions dealing with file management such as
CATALOG and LIBEDIT.) The usefulnegss of the non-echoed comment type
generally is limited to the annotation of command files. Example:

/SIMCON
SIMCON CDC VERSION 2.5.1 EXTENDED

? MACRO SPEAKTOME .

ENTER MACRO TEXT |

? --THIS STATEMENT WILL NOT BE SEEN OR HEARD.
? ..HI THERE! HOW ARE YOU?

? END

ENTER COMMAND

? SPEAKTOME

EI THERE! HOW ARE YOU?

?

SIMCON - A SIMULATION CONTROL LANGUAGE) 27

SIMCON System Commands}

With these commands, the user may perform limited file manipulations
with most SIMCON files. SIMCON system commands are prefixed by the
dollar sign ($) and are similar in syntax to the system control
statements which perform the same functions. The SIMCON system commands
may manipulate all the following SIMCON files:

BATCH The latest command file referenced. This file is the last
file referenced by a READ command or the original file
provided during SIMCON initialization.

DUMP A SIMCON utility random access file containing the common
block images from the last simulation run. This file is
used as a scratch area to store successive model states.

MACLIB The current macro library file.

SYDUMP A scratch file used to store the symbol table and the
state of the SIMCON system.

TAPELQ The output file for graphics information for the central

plotters.

UDATA An optional user supplied data file that may be used as
input to the user initialization subroutine, UINIT.

UFILE The output file for the FILE command.

ULOG An optional output file for the PRINT and VIEW commands.

The following SIMCON system commands are available. The "1fn" parameter
must be the name of one of the ahove listed f£iles, "pfn" may be any
permanent file. All portions in brackets are optional.

$SAVE, 1fn =pfn [/UN=usernoc]

This command enables the user to save as an indirect access
permanent file the 1local file "1lfn" under the name "pfn". If the
"pfn® option is not specified, "pfn" defaults to the name supplied
for "lfn". The "/UN=userno” option allows the file to be saved
under an alternate account. (The alternate account must contain a
public indirect access file of the name "pfn" with write
permission.) The $SAVE command performs the equivalent function of
the system control statement "REPLACE,lfn=pfn/UN=userno”.

28 A User's Guide to SIMCON

$GET, 1fn[=ptn] [/UN=usernc]

This command "GET's" the indirect access permanent file "pfn" on the
user's account or an alternate account specified by the "/UN=userno”
option and equates it with the local file name "l£fn". If "pfn" is
not specified, "pfn" defaults to the name "1lfn".

Caution: The $GET command will destroy the local copy of the "lfn"
file. If the user wishes to preserve the original file,
use the $SAVE command prior to the 5GET command.

SREWIND, 1lfn

rewinds the named file. $REWIND has no effect on the macro library
or the dump file.

SRETURN, 1fn

returns the named file. The SRETURN command destroys the current
local copy of the "lfn" file.

SIMCON - A SIMULATION CONTROL LANGUAGE 29

Miscellaneous Features.

Continuing commands on more than one line.

Long variable names and 1lists somtimes make desirable the
ability to continue commands on more than one line. This can be
particularly true on a narrow carriage machine such as the older
model Teletype terminals. Any command (with the exception of
comment lines) may be continued on the next line by simply
terminating the line with a comma. There is no arbitrary limit to
the number of continuation lines for a single command, however,
SIMCON will issue an error message if the command contains more than

160 characters.
Multiple commands on one line.

More than cne command may be entered on cne line by separating
the commands with semi-colons (;}. Users may £ind that with the
slow CYBER response time, multiple commands should be a speedy way
to execute a seguence of short commands. Macros may alsc be defined
on one line but with some restrictions. The macro must be
completely specified in the multiple command sequence (continuation
lines may be used). All the commands of the multiple command
sequence following the MACRO command will become the definition of
the macro. The END command is implied by the end of the command
sequence and should not be explicitly included. Example:

MACRO STEP;GO 1;DISPLAY WEIGHT LENGTH NET~GROWTH

Attention Interrupts.

Any SIMCON function may be interrupted by pushing the BREAK Kkey
(on some terminals, this key is marked INTRPT). This feature is
useful to prevent unwelcome or erroneous output to the terminal or
halt a user's unintended mistake.

Part II. The FORTRAN Programmer's Guide to SIMCON
or

How to Create a FORTRAN Model for SIMCON

SIMCON - A SIMULATION CONTROL LANGUAGE 31

System Architecture.

The SIMCON structure has at least three fundamental properties. The
first is that SIMCON is model independent. The model is simply
constructed of the rules of change of the model system from one time
step to the next. SIMCON provides for all input, output, and
intervention needs. A call by SIMCON to the model simulates one time

step.

The second property is the user's ability to reference all the model
variables during program execution by FORTRAN name. The method is to
locate all the variables the user may wish to view or change in the
blank common block. The user then supplies SIMCON with a separate file
containing all the declaration statements associated with the variables
in the blank common block. From these statements, SIMCON calculates and
stores variable attributes such as the declaration type, subscript
ranges, and common block displacements for each variable.

The third property is that SIMCON performs three functions during
model iteration:

- Variables that the user has specified are displayed as the
sinulation proceeds.

~ Each state of the model is saved for later reference. Saving the
state of the model means, in this case, that the contents of the
model's blank common block is stored on a random access file.

- And, if a SIMCON command has been defined to intervene at a
particular time step, the command is executed at that point.

32 A User's Guide to SIMCON

Programming Requirements.

A user need only provide two files. One file contains the object
code for the model subroutine(s) and is named BMODL. The second file
contains FORTRAN declaration statements associated with the model's
blank common block and is named COMMCN.

BMODL must contain one subroutine named UMODEL. This subroutine
functions as the main model routine. At the user's option, UMODEL may
reference any number of satellite subroutines. The user may also
reference the utility random number generators provided in the SIMCON
library (see page 43). All user referenced subroutines except those
contained in the SIMCON library must be compiled with the main routine
UMODEL and contained within the object file, BMODL. The names of any
user supplied subroutines other than subroutine UMODEL are arbitrary.
Figure 2.1, page 34 demonstrates the correct form of a model and
associated files prepared for a SIMCON run. SIMCON's calling sequence
to subroutine UMODEL is,

CALL UMODEL (ITIME)
where ITIME is the current simulation time step.
Other considerations concern named common blocks and a blank commeon

block more than 1000 words of memory in length. See the CCOM routine in
the section Optional User Routines, page 36 for details.

The file BMODL may contain optional routines which are referenced by
SIMCON rather than the user's model. These may include a one time
initialization routine, one or more user command routines, or the
specialized block length definition routines. These routines are
discussed alse in the section QOptional User Routines.

The COMMON file contains only FORTRAN declaration statements
associated with the model's blank common block. The declaration
statements in the COMMON file must be identical to the blank common
declaration statements as they appear in the user's mcdel and must

conform to the following rules:

1. The COMMON file must contain all INTEGER, REAL, LOGICAL,
DIMENSION, and COMMON statements that apply to any variable in
the blank common block.

2. The COMMON file may contain only INTEGER, REAL, LOGICAL,
DIMENSION, COMMON, and comment statements.

3. A COMMON statement must be the last statement of the £ile. The
dimensions of a variable may be given in any declaraticn
statement, however.

SIMCON - A SIMULATION CONTROL LANGUAGE 33

4., Named common blocks are not permitted.

5. No more than nine continuation cards per statement are
permitted.

6. Arrays of up to four dimensions are permitted although CYBER
FORTRAN permits only three.

The COMMON file is not a program routine but a data input file to
SIMCON used to construct the symbol table. FPor models with many
variables, this is a costly operation. But, as long as the COMMON file
and the model's blank common block have not been altered, it is not
neccessary for SIMCON to read the COMMON file more than once. The SAVE
command can be used to store the constructed symbol table on the scratch
file SYDUMP. (See the SAVE and RESET commands, Part I, page 20.)
Thereafter, during subsequent SIMCON runs with the same model, the file
SYDUMP can be used in lieu of the file COMMON to initialize the system
and symbol table. (See page 40, SIMCON Loading and Execution.)

34 A User's Guide to SIMCON

Figure 2.1. The simple logistic growth model demonstrated earlier in
Part I, figure 1.1, page 14. The procedure DEMO performs the neccessary
steps of preparation for SIMCON execution. Such a procedure 1is

The model ——w==

SUBROUTINE UMODEL (IT)

c
C A SIMPLE LOGISTIC GROMTH WODEL
C
C VARIABLE DEFINITIONS
C POP CURRENT POPULATION SIZE
c R INTRINSIC RATE OF INCREASE
€ CARRY CARRYING CAPACITY OF THE SYSTEN
C YIELD SURPLUS PRODUCTION (AWOUMT OF INCREASE FRGA
C THE LAST TINE STEP)
c
COMNON POP,R,CARRY,YIELD
»
C THE CLASSICAL LDSISTIC EQUATION ...

YIELD = R*POPs((LARRY-POP)/CARRY)
POP = POP + YIELD

RETURN

END

SUBROUTINE UIMIT
C OPTIONAL USER INITIALIZATION ROUTINE
COMMON POP,R,CARRY,TIELD
POP = 2.
R = .4
CARRY = 100.
RETURN
END

SIMCON - A SIMULATION CONTROL LANGUAGE 35

optional. Each step may be given as individual commands from an
interactive terminal. See page 40 for a general description of the
steps that may be placed in a procedure.

The COMMON file (required) ---

THE USER”S COMMON BLOCK FILE.
THIS FILE IS NOT A SUB-PROGRAH# BUT DATA INFUT TO SIWCON.
IT HUST CONTAIN ALL INTEGER, REAL, LOGICAL, DIKENSION,
AND COMMON STATEMENTS THAT PERTAIN TO ANY VARIABLE IN THE
BLANK COMMON BLOCK. {(SINCON IS SHART ENDUGH 70 IGNOGRE THESE
COMNENTS .Y

COMMON POP,R,CARRY,YIELD

‘o000 om

The BATCH file (optiocnal} --—-

~-BEHOFRD BATCH FILE

--4 FILE SIMILAR TO THIS FILE AAY BE EMPLOYED FOR MODEL
-~-INITIALIZATION INSTEAD OF OR IN CONJURCTION WITH SUBROUTINE
-=UINIT. THIS FILE CONTAINS OMNLY COMMENTS, HOUEVER, ANY
--SINCIM CONMAMD COULD BE INCLUDED.

«.THIS IS A SINPLE POPULATION GROWTH HODEL USING

..THE CLASSICAL LOGISTIC FUNCTION,

. IN/DT = RN(K-N)/K

-VARIABLES

..FQ? CURRENT NUMBER OF ANIHALS IH THE POPULATION (M)

«R CONSTANT OF PROPORTIOMALITY (INTRINSIC RATE OF INCREASE)
..CARRY THE CARRYING CAFACITY (X}

..YIELD SURPLUS PRODUCTIOCN, N(T+1} ~ M(T)

The DEMO procedure {(optional) =---

.PROC, DEHD.

GET, DEHOPRO, BATCH=DENOBAT, COMNON=DEMOCONUR=AAVI7H,
RETURN, BHODL.

FTN,I=DEKOPRO,B=BHODL,L=0.

GET,SIHC/UN=AAVITH.

SIHE.

REVERT. SINCON DENONSTRATION READY

36 A User's Guide to SIMCON

Optional User Routines.

One or more optional subroutines may Dbe used. An optional
subroutine must be compiled with the model and contained in the object
file, BMODL.

Model initialization, subroutine UINIT.

The user subroutine UINIT may be provided to initialize the
model before simulation begins. The UINIT subroutine is generally
intended to input initialization data from the file UDATA (assigned
by SIMCON to unit 44) although it may be used to perform any
specialized initialization function. There ' are no calling
parameters to subroutine UINIT.

Model initialization may also be performed with a command £file
named BATCH. (Refer to Part I, Advanced SIMCON Commands, Command
Files, page 25 and SIMCON Loading and Execution, page 40.) This
BATCH file when provided before SIMCON initialization, will be
automatically read and executed. Both the subroutine UINIT and a
BATCH file may be used together. SIMCON's initialization seguence
ig first to zero the user's blank common block, call the UINIT
subroutine if one is present, read and execute the BATCH file if one
is present, then place the user in SIMCON command mode.

User command routines.

The user may create command routines to perform specialized
functicns. SIMCON provides seven general purpose user commands:
UCOMAN, UCMD2, UCMD3, UCMD4, UCMDS, UCMD6, and UCMD7. Each of these
commands c¢alls a user supplied subroutine of the same name (a user
supplied command subroutine must have one of these names). A user
command subroutine should have the following structure:

SUBROUTINE UCOMAN (IBUFF,LEN)
DIMENSION IBUFF (LEN)

RETURN

END
The integer array IBUFF contains a character image of an optional
user defined parameter list that may be included on the command.
Each array element contains one character, left justified, blank
filled (the character occupies the left most positicn o¢f the word
followed by nine blanks, i.e. Al format). LEN is the number of
characters in IBUFF.

SIMCON - A SIMULATION CONTROL LANGUAGE 37

A SIMCON user command has the general form,
UCOMAN [user defined parameter list]

which results in a single call to the user subroutine UCOMAN and a
character image of the parameter 1list being placed in the array
IBUFF.

Clearly, this method of parameter passing can become quite
complicated, however, the parameter list can be used as a
"switching" device without too much difficulty. FPor instance, a
user might write a command subroutine that will perform c¢ne function
from a choice of functions, say, functions 1, 2, etc. If the user
gives the command,

UCOMAN 1

the user's UCOMAN subroutine will identify the function type (in
this case, using the fact that IBUFF(l) contains the single
character "1") and branch to the appropriate section of code.

Common block redefinition routines.

Before program execution, the user may redefine the default
sizes of two common blocks, the blank common and a SIMCON named
common which contains SIMCON's all important symbol table.

The blank common. SIMCON predefines the blank common block size
at 1000 words of memory. It is important to remember that the blank
common as defined in the user's model does not define the size of
the block during program loading. Therefore, if the user's blank
common block is longer than 1000 words, the user must increase the
blank common block size by supplying the subroutine CCOM within the
BMODL object file. Do not confuse the CCOM subroutine with the
COMMON file described in Programming Reguirements, page 32; CCOM
performs an entirely separate function. The CCOM routine should
have the following form:

SUBROUTINE CCOM
COMMON DUMMY (n)
RETURN

END

where n is the new common block length in memory words. The COMMON
statement can be the same common statement used in the model, i.e.
all the COMMON statements pertaining to the blank common block (the
other declaration statements are unnecessary). Otherwise, any dummy
variable can be dimensioned to a suitable length. CCOM shcould
contain no executable statements other than a RETURN statement.

28

A User's Guide to SIMCON

If the user employs any named common blocks in the model, the
definition of this block should alsoc be placed in the CCOM routine.

CCOM is force loaded into the primary overlay of the SIMCON
program to ensure that the contents of the common blocks defined in
CCOM are preserved during 2ll phases of SIMCON execution. If the
user provides no CCOM subroutine, the default CCOM with 1000 words
is loaded from the SIMCON library.

The symbol table. The symbol table contains all the attributes
of the model and system variables necessary for the user tc
reference the variables by name. The default size of the symbol
table allows for the 34 SIMCON system variables (some of which were
described in Part I, System Parameters, page ll) and a maximum of
166 model variables. Each variable requires 1l words of memory for
a total default block length of 2200 words. 1If the model has more
than 166 variables in the blank common block or the user intends to
define several variable synonyms during SIMCON execution (each
synonym requires a table entry, see Part I, the NAME command, page
19), the length of the symbol table must be increased. This is
accomplished by including within the BMODL object file a specialized
block data subprogram named HCOM. ECOM must have exactly the form:

BLOCK DATA HCOM
COMMON /KCC/ MAX,ENTSIZ,NENTS,IRDAT(n)
DATA MAX/n/

END

where n is the length of the symbol table in words of memory. For
example, to reserve space for 250 model variables, n should be
computed as 11 X 250 + 11 X 34 = 3124 words. Recall that each
variable entry requires 11 words and that SIMCON must have space for
its 34 system variables. The value of n in the COMMON statement and
in the DATA statement must agree.

SIMCON - A SIMULATION CONTROL LANGUAGE 39

SIMCON Files and Unit Assignments.

BATCH

COMMON

INPUT
OUTPUT

TAPELO

DUMP

MACLIB

SUPCOM

SYDUMP

UDATA

ULOG

UFILE

unit

unit

unit
unit

unit

unit

unit

unit

unit

unit

unit

unit

1
2

S
6

10

13

18

19

12

44

45

46

The last-accessed command file.

The definition file for the blank common
block.

Input from an interactive terminal.
Output to an interactive terminal.

The output file for graphics information to
the central plotters.

The random access file used for storing
model states.

The random access file for the macro
library.

The SIMCON utility common block definition
file.

A scratch file used to store the SIMCON
system state.

Initialization-data input file referenced
by user supplied subroutines.

An alternate output file for PRINT and VIEW
commands.

The ocutput file for the FILE command.

40

SIMCON Loading and Execution.

A User's Guide to SIMCON

The following are general descriptions of the necessary and optional
steps to prepare a model for a simulation run. The steps are defined in
the order they should be issued at the terminal.

FTN, I=MYMODEL, B=BMODL, L=0

GET,BATCH=filename

GET,COMMON=filename
GET,SYDUMP=filename
GET,SIMC/UN=AAVITM

SIMC

GET,MACLIB=filename
GET,DUMP=£filename

SIMCON

Compile the model and optional user
routines to create the object file,
BMODL. If a program listing is desired,
use L=filename. If there are errors,
correct these before continuing.

This will be an optional user created
command file to initialize the model.
If you are not using the BATCH file to
initialize the model, skip this step.

Create a local copy of the blank common
block definition file. Either this file
or the file SYDUMP is required.

If the COMMON file is not tc be used to
initialize the symbcl table, create a
local copy of the £ile SYDUMP, (See
Programming Requirements, page 32.)

Create a local c¢opy of the procedure
file to load SIMCON.

Load SIMCON. If there are no errors,
proceed.

This optional step provides a previously
created macro library. (See S IMCON

Macros, page 21.)

This optional step permits you to
examine the results of a simulation
which had been previocusly saved.

Start SIMCON execution. When SIMCON
prompts, enter a command.

Once the model is running correctly, a procedure file can be created
that performs all the steps above. Such a procedure is shown in figure
2.1, page 34 and demonstrated in Part I, figure 1.1, page 14.

SIMCON - A SIMULATION CONTROL LANGUAGE 41

Program Debugging.

Before SIMCON terminates due to a FORTRAN error, SIMCON closes all
files thus preserving their integrity. The most important file in this
respect is the DUMP random access file as it is through this file that
the model can be recovered to the point at which the error occurred.
(The DUMP file is created only if the system parameter #IDUMP is ON.
Refer to Part I, System Parameters, page l1l.) SIMCON also generates a
catalog of its system variables on the file ULOG which may be helpful.

As a further aid in programming debugging, a model may be compiled
with the CYBER FORTRAN Post Mortem Dump facility which provides
additional detailed information when FORTRAN errors occur. <Consult the
CYBER NOS FORTRAN Extended Version 4 Reference Manual for instructions
on the use of the Post Mortem Dump facility.

To restart after a FORTRAN error, begin SIMCON executing again by
repeating the command "SIMCON" to the operating system. Now, at
SIMCON's prompting, enter the command "TIME n" where n is the iteration
year at which the error occurred {this number is provided somewhere
within the error messages). Now, the model variables associated with
the error can be examined, and presumably, the error located. If
correction of the model program is indicated, quit SIMCON, correct and
recompile the model source code, then repeat SIMCON locading by executing
the SIMC procedure.

42 A User's Guide to SIMCCN

Conditional Attention Interrupts.

Conditional attention interrupts can be used as a program " debugging
aild or as an error trapping device. During model iteration, the model
can generate an attention interrupt by calling the SIMCON subroutine
ATTN. SIMCON detects the interrupt condition, immediately stops
iteration, and returns the user to SIMCON command mode. A c¢all to
subroutine ATTN does not in itself cause an exit from the model program;
you must provide the means of exit via a return statement within the.
UMODEL subroutine. A suggested method for employing the conditional

interrupt is as follows:

SUBROUTINE UMODEL (ITIME)

IF (X JLT. 0.0) GOTO 99 Presume X less than zero is an error.
99 PRINT*, "BAD BQO BOO" Here ig the error exit code of
CALL ATTN UMODEL.

RETURN

SIMCON - A SIMULATION CONTROL LANGUAGE 43

The SIMCON Utility Librarvy.

The following are random number functions available from the SIMCON
utility library (adapted from The GASP IV Simulation Language, Alan F.
Pritsker). Users may alsc use the random number generators supplied by
the FORTRAN library.

Function DRAND (ISTRM,ISED)

generates a uniform random variate in the range (0,1). All
other random number functions call this routine.

ISTRM a number from 1 to 6 specifying one of 6 random
number sequences.

ISED dummy argument.

Subroutine DRSET (ISTRM, ISED)

initializes the generator seed for DRAND. If DRSET is not
called, a default seed is provided for each sequence.

ISTRM a number from 1 to 6 specifying one of 6 random
number sequences.

ISED used as the generator seed for the random
sequence specified by ISTRM.

Function UNFRM (RMIN, RMAX, ISTRM)

generates a uniform random variate in the range {RMIN, RMAX) .

RMIN lower bound on the range
RMAX upper bound on the range
ISTRM see DRAND

Function TRIAG (RMODE,RMIN,RMAX,ISTRM)

generates a random variate from a triangular distribution in
the range (RMIN,RMAX).

RMODE distribution mode (the peak of the triangle)
necessarily a number within (RMIN,RMAX).

ISTRM see DRAND

14

A User's Guide to SIMCON

Function RNORM (RMEAN,RMIN,RMAX,SD,ISTRM)

Function

*unction

"unction

generates a random variate from the normal distribution in the
range (RMIN,RMAX).

RMEAN distribution mean
SD standard deviation
ISTRM see DRAND

RLOGN (RMEAN,RMIN,RMAX,SD,ISTRM)

generates a random variate from the log normal distribution in
the range (EXP (RMIN) ,EXP(RMAX))

RMEAN mean of the normal distribution

RMIN lower bound of the range of the normal
distribution

RMAX upper bound of the range of the normal
distribution

SD standard deviation of the normal distribution

ISTRM see DRAND

ERLANG (BETA,IALPHA, RMIN, RMAX,ISTRM)
generates a random deviate from the Erlang distribution (a
Gamma distribution with a positive integer parameter IALPHA) in
the range (RMIN,RMAX).
BETA, IALPHA are the parameters of the distribution. The
product IALPHA*BETA is the expectation,
IALPHA*BETA**2 is the variance.
ISTRM see DRAND
EXPON (RMEAN, RMIN, RMAX, ISRTM)

generates a random variate from the exponential distribution in
the range {RMIN,RMAX).

RMEAN the distribution mean

ISTRM see DRAND

SIMCON - A SIMULATION CONTROL LANGUAGE 45

Function NPSSN (RMEAN, RMIN,RMAX, ISRTM)

Function

Function

generates a random deviate from the Poisson distribution in the
range (RMIN,RMAX).

RMEAN the distribution mean
ISTRM see DRAND
GAMA (BETA,ALPHA,RMIN, RMAX, ISTRM)

generates a random variate from the Gamma distribution in the
range (RMIN,RMAX).

BETA,ALPHA are the distribution parameters, the product
ALPHA*BETA is the expectation, ALPEA*BETA**2 is
the variance.

ISTRM see DRAND

BETA (THETA,PHI,RMIN,RMAX,ISTRM)

generates a random variate from the Beta distribution in the
range {RMIN,RAMX).

THETA, PRI where the expectation is THETA/(THETA+PHI) and
the variance is
THETA*PEI/ (THETA+PHI)**2*(THETA+PHI+1}

ISTRM see DRAND

Part III. Error Messages

46

SIMCON ERROR MESSAGES

This is an attempt to document all of the messages that SIMCON version
2.7.1 can generate when it is unhappy. Most often the result of these
messages 1s that the command just issued by the user has caused a problem,
the message is issued and the command is ignored. A couple of errors ars
fatal, meaning execution ceases after they are issued. Other errors are
slightly worse in that they require the repair of something and the re-
running of a simulation - an unpleasant thought if there is a lot of CPU
time involved.

The messages are arranged alphabetically as much as possible with
messages not fitting that scheme located at the end of the list. The
narrative about each message contains a description about how it came to be
and some suggestions on how possibly to remedy the situation. Some of these
remedies (such as modification of a SIMCON subroutine) may be considered
drastic for the casual user. These modifications are mentioned as possible

solutions. However, they should ounly be undertaken with extreme caution

and in close consultation with the SIMCON Implementer's Guide. For users
with the determination to find out more about these errors, the subroutine
in which the offensive WRITE statement is located is also given. There are
a few occasions where the code was found to be in conflict with the Users
Guide and these points are duly noted.

Hopefully, this addition to the growing body of SIMCON documentation

will make use of the package a little less forbidding.

47

“AT" LIST FULL - COMMAND NOT PROCESSED

It is only possible to have 20 AT coumands in effect at any one
time. If this number is exceeded, this message is i1ssued. By the
same token, there is only a finite amount of space {ca 500 packed
characters) allocated for storage of AT commands for use in sub-
routine ATS. If the AT commands the user has defined are very
complex, this space resource wmay be exhausted before the 20
command 1imit is reached. User action: Lf either of the two
constraints mentioned above are too confining, SIMCON may be
modified and recompiled. The operative lines are statement
pumber 1 in subroutine ATS for the 20 command limit and common
block /ATCMDS/ which is initialized in the BLOCK DATA subroutine
for the size constraint. A less drastic way around the size
problem may be to define a macro and use it in conjunction with

an AT command.

BAD SYNTAX NEAR

The user has entered the SET command but there is either no equal
sign on the line or it appears at the end of the line. In either
case, there is little information content in the line and sub-
routine LOOPER complains. Re-enter the line,

BAD SYNTAX IN MAX= NEAR

The MAX= option in the PLOT command was being exercised but no
maximum value was specified or the value was non-numeric. The
line is reprinted at the end of the message from subroutine
LOOPER. The user should re-enter the line.

BAD SYNTAX IN NAME= NEAR

Subroutine LOOPER identified the string "NAME=" in the PLOT command
being processed but there was apparently nothing else on the line.
The line is repeated at the end of the message for the user's
edification. The suggested user action is to omit the "NAME="
string from the PLOT command but do include a variable list on the
line. The "NAME=" convention is not implemented in the STMCON
version running at OSU, so this message should not appear.

BAD SYNTAX IN RHS OF SET CCMMAND

When using the SET command, various variables are set equal to
either numerical or logical values. These numerical or logical
values appear on the right—hand side of an equals sign. This error

48

message occurs because SIMCON (subroutine VGTS) cannot interpret

the right hand side of a SET command. This side must contain
numbers, the strings “"ON" or "OFF" or combinations of numbers and
asterisks like FORTRAN DATA statements. Any other characters found
on the right side of SET commands [such as trying to set the contents
of one variable equal to the contents of another variable, SET
POPMAX = POP(10)] will generate this message.

BaD SYNTAX IN TIME CGMMAND

The user has requested a reset of the model to a time that is
illegible to SIMCON (subroutine TIMEF) is something other than
digits. User action is to re-enter the command.

COMMAND STACK ERROR

Three conditions emanating from subroutine MASTER, can generate this

error message

1) Attempt was made to take something off stack and bottom got
above top. Then this message would immediately follow message
IRET BASE TOP NW LEN

2) A set of multiple commands was encountered, the first to be
processed, the rest to be added to stack. At this point, the
stack either became full and was cleared.

3) An intervention command (AT) was taken from the stack and either

caused the stack to overflow (not likely) or the bottom to
exceed the top. Either way stack is cleared and command echoed.

COMMAND STACK OVERFLOW

This can also occur in one of two ways:
1) A pop of the stack resulting in a stack full status.
This is logically impossible in STRMGR.
2) A push of the stack resulting in a stack empty status.
This is also logically impossibie.
Therefore, a user should not be able to generate this message via
MASTER.

CCOMMAND STACKING ERROR, MACRO EXECUTION ABORTED

Here everything with the macro is fine but when subroutine MACROS
tried to put the macro ounto the command stack, the stack was already
full and there was no room for 1it. Subsequencly, the macro was not
performed and the command stack itself was cleared.

49

COMMAND TOO LONG

A command contained on more than one line extended beyond 149
characters. The entire command is reprinted and must be reentered
in a shorter version, possibly using macros. Subroutine MASTER

made this complaint.

COMMON STATEMENT >660 CHARACTERS, EXCESS IGNORED

COMMON statements are being read (either from COMMON or SUPCOM by
subroutine RDSMMT) for the purpose of comstructing the symbol table.
Any statement in these files that is composed of too many {>9)
continuation lines, is truncated when the 660 character limit is
exceeded. This does not mean that multiple COMMON, REAL or INTEGER
statements cannot be used. There is no limit to the number of
COMMON statements in the user's common subroutine. So the solution
to this error is multiple statements rather than long, continued

statements.

ERROR IN COMMON BLOCK DWMP FILE L/0 AT

In processing some sort of a VIEW command, subroutine WGET attempted
to get information about a certain variable in a certain year for
whieh no information was present in the auxillary dump file. S3pec-
ifically, there was no record of the year that appears at the end

of the message. This is a sinister error and hopefully should not

appear.

ERROR MAXIMIM SUBSCRIPT EXCEEDED FOR

This error message comes from subroutine STGT which is called when
SET, DISPLAY, PLOT, UNPLOT, ONSTAT, STATS, VIEW, or PRINT commands
are executed. For this message to be issued, STGT has looked inm the
symbol table for the variable in question and found that the original
dimension of the variable in user's blank common is less than the
subscript specified in the command being processed. User should
verify that the blank common definition is in agreement with the
user's intentions.

ERROR NEGATIVE SUBSCRIPT FOR

A negative subscript (which is not allowed in FORTRAN 1V} was

deleted by subroutine STGT in the parameter buc for any of the
following commands: SET, DISPLAY, PLOT, UNPLOT, ONSTAT, STATS,

VIEW or PRINT. The command will probably be ignored.

50

GENERALLY BAD SYNTAX NEAR

A generally vague message from subroutine STGT because a myriad of
things may have gone wrong to cause iL5 appearance. Probably coming
from a SET, DISPLAY, PLOT, UNPLOT, ONSTAT, STATS, VIEW or PRINT
command. SIMCON managed to find the variable name in the parameter
list but the subscript(s) associated with it were gemerally garbled.
They were non-numeric or something equally obtuse. User should
re—enter command.

EXCEEDED MAXIMUM SAVED STATED, 100 MODEL STATES RETAINED

This is an insidious problem. Only 100 model states can be saved
because of size limitations. However, the user is not made aware

of this until the last iteration of the model (when #IYEAR = #IYEND
by subroutine RTSTUF) by which time numerous iterations of the model
may have occurred. These results are inaccessible to VIEW, GRAPH,
PRINT, etc. commands. From a cost standpoint the user should

evaluate
(#1YEND - #IYBEG) / #NYSKIP

pefore using the SIMULATE command so that CPU time is not wasted
on inaccessible results. If more than 100 years are to be simulated,
do the simulation in sets of 100 years or modify #NYSKIP.

IDIMP MUST BE ON FOR TIME COMMAND

This message 1s issued by subroutine TIMEF and is issued when a

TIME i command is encountered. This is an attempt by the user to
reset the model to a previous state by resetting the content of users
common block to some pre-existipg state. These pre—-existing states
are stored at each model iteration on an auxiliary file (unit 13)

but only if flag #IDIMP is on (set to 1), LIf #IDWMP is not onm, the
previous model states have not been saved and there is no pelnt in
returning to them. User action: DISPLAY #IDIMP to see that it is
set to 1, if it isn't, SET #IDWMP=l.

IDIMP MUST BE ON FOR USE OF THE VIEW CQMMAND

Any VIEW, PRINT, GRAPH, GET or FILE command processed by VIEWX use
of the contents of the auxiliary file that maintains a history of
the model states. If this file has not been filled (#IDUMP=0),
these commands have no meaning. That is the information content of
this message. In order to use these commands, the user must SET
#DWMP=1 and repeat the SIMULATE command.

51

IDUMP NOT SET ON

The flag #IDUMP shows whether the variables in the user's blank
common block are being stored at every time step. If they are being
stored (#IDWMP=1), then statistical analysis can be performed by
subroutine STATS. If they are not being stored in an auxiliary file,
no analysis can be performed. User action is to DISPLAY #IDUMP and
if it is not on, SET #IDUMP=].

ILLEGAL SYNTAX

Several ways of getting this message from subroutine NAMVAR:

1) Three words must be entered when using the NAME command. If
more or fewer words are used, this message results.

2) Arrays, or portions of arrays may also be renamed but this
command must be able to fina cne parentheses and translate what
is inside of them into standard FORTRAN or SIMCON jargon. If
the subscripts cannot be interpreted correctly, then this
message is issued. Negative subscripts are also flagged by
this message. '

INTERNAL PARAMETER ERROR

In working its way around the "FROM" and "TO" character strings in
the SIMULATE command, subroutine SIMLT got lost. One remedy of this
might be to enter the command again but leave out "FRQM"” and "TO".
1f this does not work, the user may try various combinations of the
TIME i, SIMULATE i, or SET #IYEAR commands to achieve the desired

results.
INTERVAL BOUNDS IMPROPER

If the optional LO and HI bounds were specified in the STATS command
but LO HI, this message is issued by STATS. The number of
variables for statistical analysis is set to zero and the OSTAT flag
is turned off, effectively negating the command. User should reenter
the comand making sure LO <{ HI.

IRET BASE TOP NW LEN
#it# HiE# Fahed HEERE M

Commands to be executed by SIMCON are loaded onto a stack, building
up until they are executed. There are pointers that “"manage” the
stack by pointing to the next command to be performed (TOP) and the
bottom of the stack (BASE). This message is issued when somehow the
pointer for TOP is below the pointer BASE. This error is generated
by subroutine STKMGR.

52

KEY-WORD TOO LONG,

Key words are only allowed to be 10 characters in length. Exceeding
this stipulation results in this message by subroutine MACROS.

KEY-WORD UNKNGWN,

Use of the order independent form of a macro with a keyword that does
not correspond to the keyword used when the macro was established
diagnosed by subroutine MACROS. Recommended action -~ redefine macro

with keywords user can remember.

MACRQ BUFFER OVERFLOW, MACRC TOO LARGE

Two possible methods of generation (both from subroutine MACROS):

1)

2)

A macro can only contain so much information (either commands
or parameters). If that amount (200 packed characters) is
exceeded at the time of building, this message 1s issued and
the macro is not constructed.

Macros can also contain key-words that are substituted when the
macro 1s executed. The size limit still holds however. 1If a
short keyword was used in the macro's definition, say X and was
later substituted with the variable name BARCMETRIC-PRESSURE,

these kinds of difficulty may arise.

MACRO LIBRARY ALREADY FULL

SIMCON is configured to allow for 64 unique macros that means re-
defining an existing macro still counts as only one. If a macro is
being defined and this number is exceeded, this message is generated
by subroutine MACROS which maintains the dictionary. Solution:
rename an existing macro or modify the entries in common block MET/

defined in BLOCK DATA.

MACRO NAME TOO LONG

The macro encountered either had a blank as its first character or
was longer than 21 characters when it is being defined. Subroutine
MASTER will complain about either of these situations and the user
is reminded of the maximum length of a macro name of 21 characters.

53

MACRO NOT FOUND

A CALL <macname> was executed and the macro had not yet been defined.
Subroutine MASTER consulted the dictionary of macros and did not
find the macro in question. The user must define the macro in the

manner set forth oan p. 21 of the Users Guide.

MAXIMIM SUBSCRIPT EXCEEDED FOR

Subroutine NAMVAR has checked the symbol table for the variable
receiving the synonym and knows the number of its subscripts and the
maximum size of those subscripts. If the user has attempted to
access a non-existent subseript or a subscript value of the array
that exceeds its dimensioned size, this message is printed along
with the array name in question. User must refer to original array
declaration in the common definition file (unit 2).

NEW COMMAND EXCEEDS MAXTMUM, CQMMAND NOT ALLOWED

There is room provided for 45 commands in SIMCON. 34 of these
commands are pre—defined i.e., GRAPH, VIEW, TIME, etc. This means
that there is room for 1l substitutions via subroutine NAMQMD.
Understand that using COMMAND to rename a SIMCON command does not
make the original command obsclete; it can be referenced now in
two ways. Therefore, this message will appear on the twelfth
issuance of COMMAND. User action can only be to revert to macros
at this stage for redefining commands.

NEW NAME ALREADY USED

This message can only be issued when a condition is met that should

terminate SIMCON before the message is issued. If this message
appears, the program does not function as the documenter assumes.
This error should be brought to the attention of a systems programmer.

NO CLOSING PARENTHESIS IN CCOMMON STATEMENTS
RECORD CAUSING ERROR WAS

In attempting to read either the user's blank common from file COMMON

or SIMCON's /SUPCOM/ common block from file SUPCOM, the subroutine
CMREAD found an error. An array was defined in the common block
without a closing parenthesis. These files should be reexamined to

find the error.

54

NO SIMULATION RECORD FOUND

The current year is less than or equal to the beginning year
(implying no SIMULATE-type command has been issued) or the value
of #NYSKIP is negative. Any of these situations make the use of
VIEW, PRINT, GRAPH, GET or FILE commands processed by VIEWX non-
sensical. Some simulation needs to have taken place prior to
examination of results from that simulation.

NO SIMULATION RECORD FOUND FOR TIME

User specified a time that was not saved on unit 13 probably because
it did not fall within the bounds of a previous SIMULATE command {or
there was no previous SIMULATE command). Subroutine TIMEF diagnosed
this. User can DISPLAY #IYBEG and #IYEND and adjust the value of the

TIME command accordingly.

NGO VARIABLE LIST

Subroutine STATS noticed that the STATS command was followed by

nothing. The user must specify for what variables statistical
analysis is desired. The ONSTAT command followed by pothing dis=-
continues statistical analyses and should not issue this message.

OLD CMMAND NOT FOUND

ONLY

The user is trying to rename a SIMCON command but the SIMCON command
specified for renaming does not exist (or at least NAMOMD could not
find it). User action: reenter the line with proper spelling.

10 VARIABLES REPORTED UPOR

The STATS/ONSTAT commands will handle statistical analyses for only
10 variables at a time through subroutine STATS. The definition of
variable here is simple variables and array elements. Therefore if
the user wanted statistics on POP (l...ll), this error message would
sceur. There does not appear to be any stipulation against merely
splitting more than 10 variables up among more than one STATS/ONSTAT
command. In this case, the hypothetical user above could issue two
STATS commands and achieve the desired results (if not quite so

elegantly).

QLD NAME NOT FOUND

The variable name to which the user is trying to attach a synonym
in subroutine NAMVAR, is not in the symbol table.

55

PARAMETER ERROR

PLOT

READ

Issued because of a bad COMMAND statement by subroutine NAMGMD.
There were fewer than three words found in the command. Recheck

the statement entered and re-enter paying special attention to
spacing (one space separating CCMMAND from <oldname> from <newname)).

Q FULL - CAN'T ENTER

Contrary to the SIMCON Users Guide, the plot queue can only contain
10 variables, if this limit is exceeded, this message 1s issued along
with the name of the variable attempting to enter the queue. The
variable of interest can be added to the plot queue but omnly at the
expense of some other variable which must be UNPLOTted first. If the
limit of 10 variables is too confining, subroutine RPUTS2 (which
issued the message) can be modified to allow more variables as well
as a host of array redimensionings in common block /SUPCM/ (see

page B6 of Implementer's Guide).

CMMAND UNAVAILABLE

A READ command was processed resulting in a call to subroutine MDFIL
which, in the general release of SIMCON, is a dummy subroutine. The
subroutine's purpose in life is to issue this message to the user

and return. To allow execution of command files that are not local
files titled BATCH, this subroutine must be modified (see p. 12 of
Implementation Guide). This routine 1s complete in the OSU version
of SIMCON so this message should not appear.

SMULATION "FROM” TIME INVALID

The string following FROM in the SMULATE command was non-numeric

according to subroutine SIMLT. Re-enter line. Note as long as it
is a number, even a very small one, this message will not be

delivered.

STMULATION “TO" TIME INVALID

Multiple ways to get this message all in subroutine SIMLI:

1) The value appearing in conjunction with the CONTINUE command
was unintelligible to SIMCON. Re-enter line.

2) Using the SIMULATE TQ --- version of the coumand, the value
was either non-numeric or negative. Simulating backward in
time is not a valid operation in SIMCON. Re-enter line.

3) Using the STMULATE FROM -- TQ -- versiom of the command, the
value for TO could not be distinguished by SIMCON. Re—~enter

line.

36

4) When this message is issued after the GO command, the value
of the increment was either non-numeric or was negative. That
trick won't work with this command either. Re-enter line.

STACK MANAGER ERROR

hed

When attempting to execute an AT command at the time specified by
the AT definition, subroutine ATS invoked the stack manager. The
command string following the AT was loaded onto the command stack
but the command stack was filled in the process and consequently

the command stack was cleared.

SYNTAX ERROR IN "AT" COMMAND

This error is generated whem an AT command is processed by subroutine
ATS. The complaint here is that the second word in the line is not
one of the following: a number (representing time), ALL, LIST, or
CLEAR., Those are the only entities that are allowed to follow AT

in & command line.

TIME SET TO SINCE MODEL STATES WERE SAVED EVERY TIME STEPS

This is not really an error message. TIMEF is informing the user
that SIMCON could not comply with their wishes precisely. This

may come about perhaps by requesting TIME be set to an odd numbered
year when the simulation was begun on an even numbered year with
#NYSKIP=2. In this case TIME would be set to the next lower year.
User action: if user is desperate to set time to that specified,
#NYSKIP may be reset or the beginning year of the simulation may

be reset. In either case, the simulation wmust be redone.

*TQ” TIME LESS THAN "FROM" TIME IN SIMULATE COMMAND

SIMLT has diagnosed a problem. When using SIMULATE, the time to
simulate to, must be greater than the time at which che simulation
was begudﬁfFRGﬂ). When using CONTINUE, the value used must be
greater than the current year. Check #1YEAR and reset it if neces-
sary to get to the year stipulated in the CONTINUE command, but
don't try to go backwards in time.

57

TOO MANY DIMP PERICDS (), ONLY 100 USED

SIMCON will only store results of a simulation for 100 times inter-
vals. When an attempt is made to VIEW, PRINT, GRAPH, GET or FILE a
variable list through subroutine VIEWX and there are more thau 100
intervals, this message appears. The number of intervals is in
integer arithmetic. If a simulation 1s to run for less than 100
years, this should not be a problem. If a simulation is to run
longer than 100 years, some adjustment will have to be made to
#NYSKIP with its inherent loss of resclution to circumvent this
error or the simulation could take place in sets of 100 years.

UNABLE TO INTITALIZE BECAUSE THE COMMON FILE IS5 ABSENT
SYSTEM DMP FILE EMPTY OR BAD, CANNOT RESET

This is an initialization failure message issued by subroutine INIT.
One of the first things SIMCON needs to do is build the symbol table
which is referred to often. The conventional way of building this
is through access to the file COMMON (p. 32 of Users Guide). If the
file is not present, SIMCON can reconstruct the symbol table from the
file SYDIMP which may have been created in a previous SIMCON run
using the SAVE command {p. 20, Users Guide). If neither of these
files are present, this error message is generated. The remedy may
be as simple as making one of these two files local (CYBER's /GET
command) or as difficult as building the COMMON file of the user's
variables to be included in the symbol table.

Use of the RESET command may also generate the second line of this
message. This is an attempt to restore the system state to that
saved by the SAVE command. SIMCON's complaint here is that no SAVE
was done, consequently SYDIMP doesn't exist and a RESET cannot be

accomplished.

UNDETERMINED TYPE IN COMMON FILE.
RECORD CAUSING ERROR WAS

This error is caused by subroutine CMREAD of the first character
in a line is not an I (for INTEGER), L (for LOGICAL), R (for REAL),
C (for COMMON), or D (for DIMENSION). A command line that contains
no blanks alsc generates this error. The offensive line will be
echoed so the error can be identified.

58

UNKNOWN COMMAND

Two sources for this message from subroutine MASTER:

1) The command being processed was not an ordinary SIMCON command.
It was checked against the macro dictionary and found lacking
there too, or macro library empty.

2) The command has been identified as being a system command
(having a § in the first position). This gives user access
to installation commands outside SIMCON. Issuance of this
error message implies that provision was not made for the
particular system command entered in SUBROUTINE SYSQMD. This
subroutine is user-defined and appears as a dummy in the general
release version of SIMCON.

WRONG NIMBER OF ARGIMENTS FOR SIMULATE COMMAND

Subroutine SIMLT is unhappy.

There are several forms of the SIMULATE command. It can be as simple
as SIMULATE which sets #IYEAR=#IYBEG, to as complex as SIMULATE FROM
1980 to 2000 with intermediate forms leaving out the words FRQM and
TO or having only one year value. But that's it. Adding more to the
command than its most complex form above will generate anm error.

One word of caution. The command SIMULATE FROM 10 is interpreted as
taking the model from the current value of #IYEAR to 10, if that is
a positive direction. The word FR®M is not expressly noticed by
SIMCON so it won't straighten out any confusion. It assumes the
users know what they are doing.

*%x% COMMON TABLE SIZE EXCEEDED

The symbol table size has been exceeded. S5IMCON cannot keep track
of as many variables as the user wishes, Either reduce number of
variables or write a BLOCK DATA subroutine titled HCM as described
on pe 38 of User's Guide to allow for storage of more variables.
This maximum limit is, of course, machine dependent, but on the
CYBER this number is 200 variables (see p. B3 of Implimenter's
Guide for more detail). Generated by subroutine ENTR.

§ CCMMANDS NOT AVAILABLE

A call issued to subroutine SYSCMD whenever a command is processed
that contains a $ as the first character. In the general release of
SIMCON, SYSCMD is a dummy subroutine containing only the statement
generating in this message. This subroutine is functicnal in the
0SU installation so this error should not appear.

59

WAS NOT FOUND IN COMMON

A variable in the parameter list of SET, DISPLAY, PLOT, UNPLOT,
ONSTAT, STATS, VIEW, or PRINT was not found in the symbol table by
subroutine STGT. User should check the blank common block to see
that all pertinent varibles have been included there.

NOT IN QUEUE

An attempt was made to UNPLOT a variable that was not in the plot
gueue. Clever, but subroutine LOOPER was not fooled. DISPLAYing
#NPLOT will show the user how many variables are in the gqueue but
the user must keep track of what they are.

