
ORE%-H-81-001 C. 3

Mls.48� NR
Sea Great Deyository

~ NICON

»g~~ ~abnsof Noaoioo~
+c&crttun;

NATIONAL SEA GRANT DPOSITORY
PELL LIBRARY BUILOING

URI, NARRAGANSETT BAY CAMPUS
NARRAGANSETT, RI 02882

KRJC L. SEAM

p ~ oac oaf Wio4~oo wad' Wing
Oregon Sent.-e Umbral~

19



SXMCON

A Simulation Control Language

July, l981

Z. L. Heals
Department of Fisheries and Wildlife

Oregon State University
Corvallis, Oregon

Sea Grant Publication No. ORESV-Hf-8$;001



Preface.

This is the first of two documents describing the SIMCON system and is further
divided into three parts. Part 1 is directed toward all users of SIMCON and
contains a general introduction and description of the SIMCON system and a
user's guide to running a model under SIMCON. Users need not be familiar with
the FORTRAN programming language to read and use this part. Part 2 is a
modeler's guide to SIMCON and is designed specifically to aid the FORTRAN
programmer construct, models utilizing the SIMCON language. Part 3 contains
a list of run-time error messages SIMCON is capable of generating. The errors
are described and possible solutions to the errors are discussed.

Address comments and requests for documentation to:

Eric Rexstad

Department of Fisheries and Nildlife
Oregon State University
Corvallis, Oregon 97331
�03! 754-4531



Acknowledgment s.

The SIMCON system was originally conceived and designed at the Institute of
Animal Resource Ecology, University of British Columbia, Vancouver, Canada
by Ray Hilborn, Jeffrey Stander, and William Webb. Excerpts are taken
liberally from a paper published in Simulation, vol. 20  May 1973!, 172-175

in the Introduction and System Description sections in Part I and the System
Architecture section in Part II of this document.

The SIMCON program was obtained by Dr. A,.V. Tyler at Oregon State University,
Corvallis through the courtesy of the Institute of Animal Resource Ecology
and adapted to a CDC CYBER 70 model 73 computer in 1976. Special acknowledg-
ments are due to William Webb who was the author of the first document on
SIMCON at Oregon State University and was responsible for program maintenance
and upgrades until 1978, and the Sea Grant Program which funded the initial
conversion  under the Pleuronectid Project, Sea Grant no. 04-8-M01-144!.

SIHCON Error Messages - pages 47-59, was authored by Eric A. Rexstad, Department
of Fisheries and Wildlife, Oregon State University, Corvallis.

This work is a result of research sponsored by NGAA Office of Sea Grant,
Department of Commerce, under Grant No. NA79AA-D-00106  Project No.
R/OPF-1!. The U.S. Government is authorized to produce and distribute
reprints for governmental purposes notwithstanding any copyright notation
that may appear hereon.



Table of Contents

~ 2Introduction e ~ ~ ~ ~ ~ t ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ 3The S9iCON System

Summary of Commands ~ ~ ~ ~ ~ ~ ~ 5

Basic SILICON Commands ~ ~ ~ ~ ~ 6

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 11

13

SIMCON Macros

Command Files

~ ~ ~ ~ ~ ~ ~ ~ o ~ 26S INCON Comments

27

~ ~ 29i4iscellaneous Features

~ ~ ~ ~ ~ ~ ~ ~ ~ 31

Programming Requirements

Optional User routines

SILICON Files and Unit Assignments

SlHCON Loading and Execution

~ e i ~ ~ ~ ~ ~ ~ 42

~ ~ ~ ~ 43

Part III Er ror messages ~ ~ e ~ ~ ~ s ~ e ~ ~ ~ ~ ~ ~ o e i ~ ~ o o 46

Part I A User's Guide to the SIMCON Language

System Parameters

Ge't ting Star'ted o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Obtaining Output Hardcopy from the CDC CYBER .

Advanced SAIGON Commands and Features

SINCON System Commands ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Part II The FORTRAN Programmer's Guide to SINCON

System Architecture

Program Debugging

Conditional Attention Interrupts

The SBiCON Utility Library

~ ~ ~ 15

~ o ~ 16

~ ~ ~ 21

~ o ~ 25

~ ~ 4 ~ 32

~ ~ ~ ~ 36

~ ~ ~ ~ 39

~ ~ ~ ~ 40

~ ~ ~ ~ 41



Par t Z. A User ' s Guide to the S1NCON Language



A User ' s Guide to SIMCON

Entroduc t ion.

This guide shows how to utilize the -SZMCON command language to
control and monitor FORTRAN models previously constructed. Since the
ma jar i ty o f pr ogr ams wi 11 pr obably be s imul ation models, the
illustrations in this manual will be drawn from simulatian models now
operating under SZMCON. This guide is mostly concerned with
descriptions of the SZMCON system commands but also included are
sections on how to log on to the CYMR, modes of output, and how to save
and print output. Users are also referred to Part XI of this document,
m ~ ~ ~ ie, ~ s o. * ~ s .y.
anchxtecture, prcqramminq requirements and restricticns, and the SZMCON
utility library.



SIMCON - A SIMULATION CONTROL LANGUAGE

The SIMCON System.

The SIMCON system is primarily useful with models that simulate
discrete time systems. Its application is thus different from the event
oriented simulation systems such as GASP or SIMSCRIPT and continuous
system simulation aids. All user programming is done in FORTRAN. The
user interacts with the program through very simple commands, of which
only two are sufficient to run a model and view its results.

The SIMCON system was conceived and developed with three goals in
mind:

l. Selected variables can be viewed as simulation is proceeding.

2. The simulation may be stopped at any point, any variable
displayed or modified, then the simulation resumed from the
point where it was left.

3. Any variable can be viewed after simulation is complete.

Feat~res of the SIMCON system are:

SIMCON contains a set of commands which provide for
control and monitoring functions.

user

Variables may be displayed or modified by name  the SET
DISPLAY commands! .

and2.

andSelected variables may be viewed during simulation  PLOT
UNPZOT commands! .

3.

andAny variable may be viewed after simulation  PRINT, VIEW,
GRAPH commands! .

4.

Since FORTRAN variables are accessible by name, SIMCON is
handy for debugging programs.

very

Computer based simulation modeling often times requires real-time
interaction between the model user and the model itself. A major
portion of programming effort in interactive digital simulation is
usually involved with methods of altering and viewing variables as the
simulation proceeds and with obtaining graphical or other forms of
output from the program. The SIMCON system has been made completely
independent of the model and is capable of handling all input, output,
and intervention needs. This can reduce programming and debugging time
significantly. Also, any previously programmed self-contained model can
be run on the SIMCON system with a minimum of alteration and effort.



A User's Guide to SIMCON

Printer and line plotter displays may be obtained on any of the
remote terminals supported by CYBER as well as the central high
speed line printer. Graphics displays can be produced on any
remote graphics display device supported by the CYBER COMPLOT
graphics package such as any Tektronix terminal or plotter and
also the Gerber flatbed plotter.

At the option of the user, SIMCON has the capability to restore
the state of the model to any previous point in simulated time
 the TIME command!. For example, while simulating from the
year 1980 to the year 2000, the user may stop at 1990 and
explore several alternatives from 1990 to 2000 without having
to restart the model from 1980 each time. The user may also
return to the initial state of the model from any point without
having to use expensive FORTRAN input/output to reread initial
values.

Beginning and ending time periods are easily specified for a
simulation run  the SDKLATZ command!.

Synonyms may be def ined f or FORTRAN var iable names. For
example, the variable BARO can be referred to by the more
descriptive name BAROMETRIC-PRZSSURZ.

A series of SIMCON commands may be stored on a file and
executed as a group  BATCH f iles! . A BATCH f ile is a
convenient way to initialize variables.

SIMCON commands may be combined into groups called macros.
These macros can be created and executed interactively to
automatically perform combinations of functions and can be
conveniently maintained on a permanent library file.

Commands may be defined to intervene at a specified paint in
simulated time. Such a command may automatically alter a
variable at a given point in the simulation  AT commands!.

The SIMCON system has the ability to call user provided
subroutines upon command. The programmer may write his or her
own special output routines or provide instructions or
promptings to novice users-



SIMCON � A SIMULATION CONTROL LANGUAGE

A ~Summa' of Commands and Abbreviations.

Command DescriptionAbbr. Page

AT

CALL

CKZiKR

COMMAND

A

CA

CL

COM

9

2l
17
19

9 1
16

16 9 8
20

CONTINUE
DISPLAY

FILE

GZT

GO

GRAPE

HDUMP

C F
GE

GO

G H
17
21

INITIALIZE

MACRO

I

M

19
16

NAME

QNSTAT
N 0

PLPLOT

P RINT

10

2S

20

20 6 7
16

QUIT
READ

RESET

SAVE

SET

SIMULATE

STATS

Q R RE
SA

S SI
ST

9
19
17

8

TIME

UCOMAN

UNP LOT
VIEN

T U UN
V

Specifies a future intervention.
Calls a SIMCQN macro explicitly.
Clears the output work area.
Defines an alternate name for a SIMCON or user
command.
Resumes the simulation.
Displays the value of a variable.
Writes output onto a file.
Gets a variable for viewing.
An alternate form of the CONTINUE command.
Produces a graphics display.
Displays variable attributes and the symbol
table  primarily for debugging!.
Calla the user's initialization subroutine.
Allo~s the user to create a SIMCON macro as a
set of other SIMCON commands.
Defines a synonym for a variable name.
Defines a list of variables on which to perform
simple statist, ical monitoring during simulation.
Provides for automatic output to be generated
for selected variables during simulation.
Produces a table of the values of variables
across time-
Terminates SIMCON execution.
Causes commands to be read from a file.
Restores a system state previously saved
Saves the current system state.
Changes the value of a variable.
Sets simulation times and starts the simulation.
Produces a statistical summary of variables over
t ime ~
Restores any model state.
Calls a user defined command subroutine.
Reverses the action of the PLOT command.
Produces a printer plot display.



A User's Guide to SILICON

Basic SIMCON Commands.

All that is necessary to manipulate a model are a means of iterating
the model a specified number of times and of setting and displaying the
values of variables. The following discussion describes the simplest
and most basic set of SIMCON commands sufficient for the usual needs of
simulation modelling.

Variable ~Namin Conventions. Many SIMCON commands reference the
values of the FORTRAN variables of the model program. Both subscripted
variables  arrays! and non-subscripted variables  scalars! may be
referenced in commands. For example, the command "DISPLAY XVAL" would
cause the value of the variable XVAZ to be displayed at the terminal.
Single elements of subscripted arrays are referenced in standard FORTRAN
notation  see examples below!. Subscript ranges may also be referenced.
The follwing examples are all legitimate methods to reference variablesc

references:

Any combination of the above referencing methods may be used.

The Basic SIMCON Commands.

SET variable value

The named variable is set to the specified value. The value may be
an integer or a real number or one of the specia1 mnemonics "ON" and
"OFF". Examples:

SET XVAL~1.7
SET MAX�0! ~23
SET IFLAG ON

Alsof

SET FTYPE�...5! =1 2 3 4 5

will set the first 5 elements af the array FTYPK.

SET POP �...5! ~10 20 30

the command:

DISPLAY POP �0,2!

DISPLAY MAX  ALL!

DISPLAY SURF   5... 10 f ALL!

DISPLAY MAX �0!
DISPLAY MAX

the single element in column 10 and row 2
of the array POP
all the elements of the singly subscripted
array MAX
all the elements in columns 5 through 10
inclusive
the tenth element only
the first element only



SIMCON � A SIMULATION CONTROL LANGUAGE

assigns the first 5 elements of the array POP to the values 10 20 30
30 30. Note that the last value is repeated until all the elements
are filled. A value may also be repeated using the "~' character.
The following two commands have identical results:

SET MAX�...10!~3*1 3~2 3*3 4
SET MAX�...10!~l 1 1 2 2 2 3 3 3 4

In the SET command, the words "ON" and "OFF" are synonyms for the
values 1 and 0, respectively. Also, the word "ALL" may be used to
specify array elements. More examples:

SET POP ALL!=0
SET MAT ALL,4...6!=l
SET ZNUM�,1,1...4!~l 2 3 4
SET VAL l,l...3,1...3!~3*2.6 3~7.2 3*8.9

In the last example, the elements of the three dimensional array VAL
are filled such that the left most subscript changes through its
range most quickly  in column major order!. Note that nine elements
were referenced and assigned values.

DISPLAY variable s!

The current values of the named variables are displayed at the
terminal. For example, elements from three variables  two arrays
and a scalar! are displayed by the following command:

DISPLAY MAT�,ALL! XVAL MAX l...l0!

 See also examples on page 6.!

SIMULATE IFROM] i ITO] j

causes the model to be iterated and produces a simulation run. The
symbol i represents the first year that is to be simulated � or the
year of the first iteration. The symbol j represents the last year
of the simulation. The portions in brackets are optional and may be
omitted.

A convenient alternate form of this command is:

SIMULATE I TO] j

which assumes that the first year is 1 and the last year is j. Some
examples:

SIMULATE FROM 1966 TO 2000
SIMULATE 20



A User ' s Guide to S IMCQN

SZMCON "remembers' all the intermediate states of a simulation. The
following output commands will allow the user to see the values of
the variables as they have changed over the simulated time-

PRINT variable s!

outputs a table of the values of the named variables over the
simulated time- Example:

PRINT POPULATION MORTALITY CATCH CATCH-PER-EFFORT

VIEW variable s! [MAX~valuej

produces a printer plot of the named variables over the simulated
time. The optional MAX specification scales the plotting axis. If
a maximum is not specified, a maximum is computed for each variable.
Example:

VIEW FPOP YIELD MAX~LE6

The expression "1E6" is a short-hand notation meaning 1 times 10 to
the 6'th power � million!. An example of VIEW command output is
shown in figure 1.1, page 14.

GRAPH variable  s! [MAX~value]

produces a graphics display of the named variables against simulated
time for any device supported by the CYBER COMPLOT graphics package.
These include all Tektronix graphic terminals and plotters and the
centrally located GERBER flatbed plotter, as well as others.
 Consult the CYBER COMPLOT User's Manual available at the O.S.V.
computer center for more information about the graphics devices

py y *.! ~~ ~ f h
CDC CYBER, page 15. Example:

GRAPH OBSERVED PREDICTED MAX~10000

GRAPH variablel VS variable2 [PEN~value[

This special form of the GRAPH command permits plotting one variable
against the other rather than against time. Variablel is plotted on
the Y axis against variable2 on the X axis. The plotting scale is
automatically determined for each var iable. The option "PEN=0"
displays the data as unconnected points. "PEN 1" connects the
points by lines in the order they were generated by the simulation.
Example:

GRAPH SPAWNERS VS RECRUITS PEN~1



SIMCON � A SIMULATION CONTROL LANGUAGE

resets the model to a pr evious state. The symbol i may represent
any time or year previously simulated. Examples:

TINE 1
TIME 1957

TINK 0

Very often, the initial model state before simulation is desired so
that a model user may change parameters to prepare for a new
simulation run. This command always refers to the initial  or
"zero'th"! state irrespective of the units of simulated time
 whether they be years or simple iteration counts!. For example,
the following sequence produces a simulation run of 20 years between
1960 and 1980 then returns to the initial state:

SIMULATE 1960 1980
TIME 0

CONTINUE [TO] j

is an alternate form of the SIMULATE command which is particularly
useful in respect to the TIME command. CONTINUE simulates from the
current state  the ending state of the last SIMULATE or CONTINUE
command or a state set by TIME! to the year j. If j is not
specified, CONTINUE considers the current state the "zero'th" state
of a new simulation and iterates to the ending year specified on the
last SIMULATE or CONTINUE command.

A command similar to CONTINUE, GO iterates the madel from its
current state exactly i iterations. Note that i is not the value of
a year but the number of years to iterate beyond the current state.
If i is omitted, 1 is assumed.

AT time command

This command will interrupt the next simulation at "time", execute
"command", then resume the simulation. The AT command is useful to
alter a model parameter with a SET command in the midst of a
simulation. The word "ALL" may be used to specify that the command
is to be executed between every time step of a simulation. Up to 20
different AT commands may be in effect at one time. Examples:

AT 5 SET F=.7
AT ALL SET GR0~1



lo A User's Guide to SIMCON

Most SIMCON commands may be used in AT commands. However, the
commands SIMULATE, CONTINUE, GO, TIME, or another AT command should
not be used since they would have little meaning in this context.
The PRINT, VIEW, GRAPH, and FILE commands should be avoided as well.
 The PLOT command is much better suited for these purposes. The
PLOT and PILE commands are discussed in Advanced SIMCON Commands and
Peatures, page l6.! Also, a command such as 'AT ALL DISPLAY
xs very inefficient and should be avoided in preference to the PLOT
or PRINT commands.

AT TIST

lists all AT commands currently in effect.

deletes all current AT command.

terminates SIMCON execution. To restart the program> type the
command "SIMCON" in response to the system prompt "/". The model
can be reset to the state where it was left by using the TIME
command.



SIMCON - A SIMULATION CONTROL LANGUAGE

~S stem Parameters.

4DEFMAX
is the default plotting scale maximum used for variables in the
plot queue.  The plot queue is discussed in Advanced SIMCON
Commands and Features, page 16.! The default value is 100.

0 IBAUD
This parameter has meaning only for graphics output to remote
graphics terminals and represents the transmission rate to the
terminal. It used by the graphics display routines to
calculate delay times. The default value is 1200 baud.

4IDUMP
is a switch that when ON  set to 1!, SIMCON stores all
intermediate model states on a scratch file. This makes all
the states of a simulation run available to output and other
commands such as PRINT, GRAPH, and TIME. The default is ON.

4 IGPLT
contains
queue:

the output method code for the variables in the plot

1 output a printer line plot  def ault!  VIEW!
2 output a table of values  PRINT!
3 output a graphics display  GRAPH!
4 not used
5 output a table to the file UPILE  F1LE!

f IPLDEV
contains the code def ining the graphics output device:

1 Tektronix terminal  default!
2 not used
3 GERBER flatbed
4 both Tektronix terminal and the GERBER flatbed

5IYBZG
is the base year for the simulation. The SIMCON command
SIMULATE sets this parameter. The default is Q.

SIYEAR
is the current year of the simulation. This parameter is
incremented during the simulation.

SIMCON uses several internal system parameters as pointers, flags
defaults, etc. The following is a partial list of SIMCON system
parameters which may be relevant to a user's particular application.
All SZMCON parameter names begin with the sharp sign �!, and they may
be displayed or modified by DISPLAY and SET commands in the manner of
any other program variable.



A User's Guide to SZMCON

$ZYEND is the last year of the simulation. The SZMCON commands
SZMULATZ, CONTINUE, and GO set this parameter.

4LOGUNT
contains the logical output unit number for PRXNT and VZEW
command output. Valid unit numbers are 6, the terminal  file
OUTPUT!; 45, file ULOG; 46, file UFZLE. The default is unit 6.

fmDTZZ
is the Tektronix model number. This parameter has meaning only
for graphical output to a Tektzonix terminal. The default is
the Tektronix model 4010.

4NLZNE
is the number of characters per line used for the printer line
plot display. The default is 60 characters.

$NPLOT
is the number of variables currently in the plot queue.

fNYSKZP
is the iteration interval at which model states are saved if
and only if the system switch 4IDGMP is ON. The default value
of 1 causes model states to be saved for every time step of the
simulation, 4NYSKIP~2 means every other time step, etc.

4PLTMAX�0>
contains the plotting axis scaling maximum for each variable in
the plot queue.



SIMCON � A SIMULATION CONTROL LANGUAGE 13

~Gettin Started.

To use SIMCON to run a model and obtain meaningful output, the user
must have some knowlege of the model in general and its most. important
variables in particular. This section is intended to assist users new
to the CYBZR begin the log-in process  initiate communication with
CYBER! and run the demostration model provided as an example  figure
L.l, next page! . To run other models, new users should f ind that their
instructor s or the model pr ogr ammer have pr ov ided the spec if ic
instructions necessary.

Figure 1.1 illustrates the log-in sequence and a sample run on a
terminal that is connected to the computer via a direct line  a terminal
which does not need to communicate over a telephone!. Most users will
probably have access to such terminals so only this one example will be
given.

The first step is to make sure that the terminal has the power
turned on and the switch marked LOCAL/LINE set to LINE. On some
terminals, this may be marked TERN, TERN READY, DATA, or AUTO ANSW. To
begin the log-in sequence, push the return key. The system should
respond with a minus sign  -!. Type NOS and again push the return key.
The system will then ask for four indentifiers. These identifiers,
which include a user account number, password, charge number, and
project name are required by the system in order to log-on successfully.
The identifiers are assigned to every CYBER user and are designed to
facilitate accounting and preserve user privacy. Enter the appropriate
number in the blacked-out area when requested and end each line with the
return key. When the computer is ready to receive your input, it will
prompt you with the symbol "/". Now, you may repeat the demonstration
shown in figure l.l or you may experiment to familiarize yourself with
the SXNCON system. To end a terminal session, type BYE.





SZMCON - A SIMULATION CONTROL LANGUAGE 15

Output of printed tables or printer plots may be written to a file
then routed to the central line printer. While in the SIMCON system,
issue the the following commands:

? SET 8LOGUNT 45
? PRINT POP �...10!
? QUXT

/TITLE, DUMMY./MYNAME Label a dummy file with your name.
TITLE COMPLETZ

/REWXNDiULOG
$'REWINDgULOG.
/COP Y g ULOG p DUMMY Copy the output to the dummy file.

EOX ENCOUNTERED.
/ROUTE, DUMMY,DC~PR Send the file to the line printer.

ROUTE COMPLETE Your SIMCON output will be filed under your
name  the name given on the TITLE command! at the computer center's Z/0
counter. Just ask for it by name.

Rewind the output file, ULOG.

Sending graphical output to the GERBER plotter is done in much the
same way as routing output to the printer:

? SET 4 IPLDKV=3
? GRAPH POP�...10!

QUZT

Select the GERBER plotter.

/TITLZ DUMMY DC~GB I
? JOHN Q. PROGRAMMER
7 000000

? 1 PLOT 12 BY 18 IN-
?

TITLE COMPLZTE.

/REWIND,TAPE10
$RZWIND,TAPZ10.
/COPY,TAPE1G,DUMMY

EOI ZNCOUNTERED-

/ROUTE,DUMMYgDC~GB
ROUTE COMPLETE.

Define the output unit as the file ULOG,
list the variables of interest, then
exit SIMCON and issue the following CYBER
commands:

Provide the following label information:
your name,
your charge number, and
number of plots desired and the dimensions
End input with a return on an empty line

SXMCON wrote the graph on the file TAPE10
automatically for you.

Route the file to the GERBER plotter.







A Vser's Guide to SZMCON

Figure 1.2. Here, two simulation runs are made with one parameter
changed and the results of an output variable are compared. This
example was produced using the model PXSCZS  from User's manual for
PXBCES: a ~sacral fish ulation simulator and~xisie~res arne
~ r . ~ ~ r
Rept. 480 by A. V. Tyler! .

? AT 10 SET BDATS~3000

? SIMULATE TO 30
? GET FPOP

? TINE 10
? SET BOATS~6000

? CQNTINK TO 30
? GET FPQP

? VIEQ

'FRIABLE 1 IS FPOP NAX < .521E+08
VARIABLE 2 Ii FPOP MAX > a521EIOB

XXXXXXXXX+XXXXXXXXX+XXXXXXXXX+XXXXXXXXX+XXXXXXXXX+XXXXXXXXX+

2

2 1

2

1

1

1

1

1

1

1

2

2

2

2

2

2

2
2

2

OI

II

2I
3I
4I

5I

7I

SI

9I

10I

11I

12I
13I

14I

15I

16I
17I
18I

19I
20I

21I
22I

23I
24I

25I
2bI
"7I

"B!

29I

30l

Generate a simulation run then get the
variable FPOP  the total number of animals
in the population!. Then go back to an
intermediate state and reset the model
parameter BOATS, the quantity of f ishing
effort  measured in boat-days! .
Get the variable FPOP from the second run,
plot, and compare.



L9SXMCON � A 8 IMULATXON CONTROL LANGUAGE

Defining Variab3.e Synonyms, the NAME command.

The NAME command enables the user to define a synonym of up to 20
characters for a model variable. The variable may then be
referenced by either name. Any character is /egal jn a synonym
except imbedded blanks and the special characters L,;:4$] . The form
of the NAME command is,

NAME oldname newname

For example, the command,

NAME POP POPULATION-SIZE

will allo~ the model variable POP to be referenced by the name
POPULATION-SIZE. Descriptive names such as this may be helpful and
pleasing to the eye when they appear on DISPLAY or PRXNT tables.
Arrays, parts of arrays, or single array elements may also be given
synonyms.

This command requires that sufficient space be reserved in
SIMCON's symbol table. The default table size allows for 166 model
variables and synonyms which is probably more than adequate for most
SXMCON applications. Since this is a programming consideration,
this subject is discussed further in Part IZ, ~ptional User
Routines, page 36.

User Defined Commands.

These commands perform user defined functions and are used in the
same manner as the regular SIMCON commands. SXMCON provides for up
to 7 user defined functions. The command functions are supplied by
FORTRAN subroutines which are compiled with the model and linked
with SIMCON at execution time.  See Part Zl, ~Otional User
Routines, page 36.! The commands are: UCOMAN, UCMD2, UCMD3, UCMD4,
UCMDS, UCMD6 and UCMD7.

Renaming SIMCON Commands.

SIMCON commands may also be given new names. These may be of up to
20 characters but must not include imbedded blanks or any of the
special characters 4,;:4$j . This feature should be especially
useful with the user commands described above. Macros should not be
given names that are defined as SIMCON commands or visa versa for
when a macro call by name is issued, SIMCON searches its command
list first.  Macros are discussed on page 2l.! Using the CALL
command avoids this difficulty since SXMCON presumes the name is a
macro. The command has the form,

COMMAND oldname newname



za A User's Guide to SXMCON

This command is primarily a debugging aid for model programs. Xt
produces a catalog table of the variables in the model common block
and the SXMCON utility common block. Zncluded is information on the
common block displacement of each variable, the variable length,
maximum subscript sizes, and the variable type. The optional
parameter n specifies the block to catalog: 0, both the model
 user! and SXMCON common; 1, the model common; 2, the SXMCON common.
The default is l.

stores the current SZMCON system state on the file SYDUMP. The
SZMCON system state includes all system parameters  some of which
are listed on page 11! and the symbol table  mentioned in
conjunction with the NAME command, page 19 and discussed in more
detail in Pact ZZ, 0 tional User Routines, page 36! ~

During SZMCON initialization, considerable execution time is
devoted to the building of the symbol table and its associated
parameters from the programmer supplied information contained in the

t ~ .~92~.p32f
discussion of the files associated with building the symbol table.!
After this table is constructed, the SAVE command stores the table
on a file so that during later SXMCON runs with the same model, the
cost of construction can be avoided. This savings can be very
substantial if the number of model variables is 100 or more.

restores the system state saved by the save command.



21SIMCON � A SIMULATION CONTROL LANGUAGE

SINCON Macros.

A macro is defined by the command,

MACRO name I Pl P2 ... P10]

where,

is a character string of up to 20 characters identifying
the macro. Letters, numbers, and symbols may be used in a
name except blanks, commas, colons, or semi-colons. The
characters I and $ may be used but. must not be the first
character of the name.

is one of up to 10 parameters that may take on one of the
following forms:

Pi

a key-word name of up to 10 characters. A key word
is a name used inside the text of a macro for which
we may wish to substitute the name of a variable,
symbol, or value when the macro is executed. The
characters comprising a key-word name may be
letters, numbers, or symbols except those mentioned
above.

a key-word K that is to be assigned the value or
string D by default. Default assignment in this
context means that the value or string D is
substituted for the key-word name K wherever K
appears inside the macro text if the user makes no
other explicit assignment to K when the macro is
executed.  Explicit key-word assignment is
described in more detail below.!

a key-word assigned to "null" by default i.e. the
key-word is to be deleted from the macro text
before execution if no other explicit assignment is
made to K.

Definitions. A SXNCON macro is a user defined collection of SIMCON
commands assigned an identifying name. The commands forming a macro are
executed as a unit by simply entering the macro name as if it were a
regular SINCON command. Macros can provide a convenient means to
quickly and accurately initialize a model for different types of
simulation runs. They may also be used to execute often repeated
command sequences or, in the case of a model used for instructional
purposes, may contain explanatory comments to the user  see SXMCON
Comments, page 26!. A macro of this type might be named "HELP".



22 A User's Guide to SINCON

A macro is executed by the command,

CALL name tPl P2 ... P10]

where,

is an optional item of the command,

is the name assigned to a macro, and

is an optional parameter of one of the following forms:Pi

V a value or character str ing to be substituted for
the It:ey-ward Ki in the order it appears on the
macro def inition statement,

K~V where V is a value or str ing to be substituted for
the key-word K<

key-word K is to be deleted from the macro text.

When a macro is called by a command of the form,

CALL name Vl V2 ... V10

V1 is substituted for key-word Kl on the macro definition statement, V2
2. . '2h ~ 92 ~d

Example:

BATES .5 .1 .125 .05 .225

Zf a macro is called by,

CAT L name KL~VL K2~V2 ... K10=V10

where Vi is either absent  null!, a character string, or a value and Ki
is the name of any key-word on the macro definition statement, Vl is
substituted for K1 regardless of the order in which the key-words Ki

pp ~ P 2 2 h' * d d ~t p

PLAN TYPZ~L VAR~FLEET

Zn general, order independent and order dependent forms ought not be
mixed. However, order independent parameters may folio~ order dependent
parameters on the CALL command but order dependent parameters should
never follow order independent parameters.



SZMCON � A SZMVLATZON CONTROL LANGUAGE 23

Macros may be nested  macros may reference other macros!. While
there is no arbitrary limit to the degree of macro nesting, each macro
"call" increases the demand on the central memory allotted to macro
execution  the actual amount depends on exactly where a macro call
occurs inside another macro!. Zf a memory overrun occurs, SIMCON issues
an informative message and stops macro execution.

A macro library may contain up to 64 individual macros and each
macro may consist of from approximately 60 to 100 SZMCON commands
depending on the length of each command. Sy "chaining" macros  the last
command of a macro being a call to another macro!, the effective length
of a macro can be increased. Zn this case, there would be almost no
chance of a memory overrun since for each command executed, that memory
space is freed.

There is no proviSion in SZMCON to edit a macro, howevers a macro
may be redefined by simply creating a new macro with the same name.
Unfortunately, the macro library cannot be edited on any CYBER text
editor  EDIT or XEDIT!. Users may find it mare convenient to define or
redefine macros in command files which are easily edited.  See Command
Files, page 25.!

Any SZMCON command may be contained in a macro except another macro
definition. statement..

~ ld
text files  see Command Files, page 25! or created interactively and are
stored on a random access f ile which may be permanently maintained on
the user ' s account. Any previously def ined macro contained on this
f ile, called the SZMCON macro library, is automatically available for
direct use during any SZMCON run. A macro library created during one
SZMCON run may be saved and used in any other SZMCON run at any time
without special attention; the user simply gets the library as a local
file either before SXMCON is executed  see SEMCON ~Loadin and Execution,
page 40! or during SZMCON execution with the SZMCQN $QET command  see
SIMCON ~S stem Commands, page 27]. A new library may also be used by
issurng another SGET command . Some simple macro examples are shown on
figure 1.3, next page.



24

Figure L.3. Some macro examples.

The following commands form the macro RU83.

END {or from an interactive terminal, a
return on an empty line! terminates the
macro definition.

SZMCON looks up the macro RUN3 and executes
it.

3.000000

.2400000K-01
3.000000
~ 7200000K-01
475.8390
3000.000
1S8.6130

1996.490

8700B27.

Def ine the macro SETVAL with parameter
key-words X and Y.

Execute the macro SETVAL.

? SETVAL 1.5 100

XVAL

YVAL

?

1.S00000

100.0000

? � DEFINING 4 SINPLK NACRO
? NACRG RUN3

ENTER HACRO TEXT
?'GQ 1

'? DISPLAY PROGRAN COST YKARS TOTAL
'? DISPLAY YIELD EFFORT CPUK SUN
'P DISPLAY RECRUITS
'? KND

ENTER CGNHAND

'? � CALLING A NACRO DY NANK
'? RIJN3

PROGRAN S

COST S

YEARS C

TOTAL S

YIELD S

EFFORT 0

CPUK R

SUN a

RKCRUITS 8

'? � 4 HACRO MITH PARANKTKRS

? SACRO SKTVAL X Y
ENTER MACRO TEXT

'? SKT XVAL=X
? SET YUAL~Y
'? DISPLAY XVAL YVAL

? END

ENTER CQNNAHD

?

A User's Guide to SZMCON



25SIMCON � A SIMULATION CONTROL LANGUAGE

Command Files.

Command files are explicitly executed by the READ command which has
the general form,

READ pfn I /VN=user noj

where "pfn" is the name of an indirect access permanent f ile. The
portion in brackets is optional and can be used to specify that the file
is on an alternate user account  the file must be public!. If "pfn' is
not specified, the READ command will cause SIMCON to rewind then reread
the last command file processed  permitting reinitializing via the same
BATCH file!. The action of this command is to first perform the
equivalent of a system "GET" control statement {only when a "pfn" file
name is given! which equates "pfn" with the file name BATCH. The effect
is, "GET,BATCH pfn". The SIMCON command "READ BATCH" is permitted and
results in the equivalent of the system control statement
GET,BATCH~BATCH". {Note that this is not equivalent to the READ

command without a "pfn" file specified.!

When a "pfn" file name is provided, the READ command will
return or destroy the local BATCH file. If there is no
permanent copy of the local BATCH file and the user wishes
to preserve it, the user must use the SIMCON "$SAVE"
command before issuing the READ command.  See SIMCON
~S stem Commands, page 27.!

Caution:

A command file may contain any SIMCON command including calls to
macros except that it may not contain, or in any way encompass, another
READ command {as for an example, a command file calling a macro which
contains a READ command!. A HEAD command encountered while a command
file is being processed may produce unexpected results.

A command file is a user defined set of SIMCON commands stored as
text on a file. A command file may be conveniently used to initialize a
model before the first simulation run. In this case, the file need only
be provided as a local file with the name BATCH and SIMCON will
automatically read and execute the commands during the initialization
process.  See SIMCOM ~Loadin and Exsection, page 40.! Command files
defer from macros since it is not possible to pass parameters or create
them interactively while running SIMCON and since each command file must
be maintained as a separate permanent file. They are, however, ideal
places to perform model initializations, define macros, or entire macro
libraries.  Macros and macro libraries are discussed on page 2l.!
Also, they may be of virtually unlimited length.



26 A User's Guide to SIMCON

SZMCON Comments.

Part of the usefulness of SIMCON macros and command files is the
ability to provide explanatory messages to SZMCON users. This is
particularly true when a simulation model is being used in a classroom
or for demonstration purposes. There are two types of comments. One
type is always echoed at the terminal when encountered in command files
or macros. The other type is not echoed. The echoed comment type is a
line of text prefixed by two periods  ..! in columns 1 and 2. The
non-echoed type is preceeded by two dashes   � ! or a single asterisk
 *!.  This latter character is provided for compatability with certain
CYBER system utility functions dealing with file management such as
CATALOG and LZBZDIT.! The usefulness of the non-echoed comment type
generally is limited to the annotation of command files. Example:

/SIMCON
SZMCON CDC VERSION 2-5.1 EXTENDED

? MACRO SPEAXTOME
ENTER MACRO TEXT

? � THIS STATEMENT WILL NOT BE SEEN OR KEARD
? ..HI THEREl HOW ARE YOU?
? END

ENTER COMMPQN!
? SP EAKTOME

EI THEREl HOW ARE YOU?
2



SXMCON - A SIMVLATION CONTROL LANGUAGE 27

SZMCON ~S stem Commands.

With these commands, the user may perform limited file manipulations
with most SIMCON files. SXMCON system commands are prefixed by the
dollar s ign   $ ! and are s im ilar in syntax to the sys tern control
statements which perform the same functions. The SXMCON system commands
may manipulate all the following SXMCON files:

BATCH The latest command file referenced. This file is the last
file referenced by a READ command or the original file
provided during SXMCON initialization.

A SIMCON utility random access file containing the common
block images from the last simulation run. This file is
used as a scratch area to store successive model states.

DUMP

MACLIB The current macro library file.

SYDUMP A scratch file used to store the symbol table and the
state of the SIMCON system.

TAPE10 The output f ile for graphics information for the central
plotters.

An optional user supplied data file that may be used as
input to the user initialization subroutine, UXNXT.

The output file for the FILE command.UFZLE

ULOG An optional output file for the PRINT and VIEW commands.

$SAVZ,lfn =pfn [/VN=usernoj

This command enables the user to save as an indirect access
permanent file the local file "lfn" under the name "pfn". If the
"pfn" option is not specified, "pfn" defaults to the name supplied
for "lfn". The "/UN userno" option allows the file to be saved
under an alternate account.  The alternate account must contain a
public indirect access file of the name "pfn" with write
permission.! The $SAVE command performs the equivalent function of
the system control statement "RZPLACE,lfn~pfn/UN=userno".

The following SIMCON system commands are available. The "lfn" parameter
must be the name of one of the above listed files, "pfn" may be any
permanent file. All portions in brackets are optional.



A User's Guide to SIMCON

SGET,lfnL pfn] PVN userno]

This command "GET's" the indirect access permanent file "pfn" on the
user's account or an alternate account. specified by the /UB~userna"
option and equates it with the local file name "lfn". If "pfn" is
not specif ied, "pfn" def aults to the name "lfn".

Caution: The $GZT command will destroy the local copy of the "3.fn"
file. If the user wishes to preserve the original file,
use the $SAVZ command prior to the $GZT command.

$RENIND,lfn

rewinds the named file. $REWIHD has no effect on the macro library
or the dump file.

$RETURN,lfn

returns the named file. The $RETUHN command destroys the current
local copy of the "lfn" file.



29SIMCON - A SIMULATION CONTROL LANGUAGE

Miscellaneous Features.

Continuing commands on more than one line.

Long variable names and lists somtimes make desirable the
ability to continue commands on more than one line. This can be
particularly true on a narrow carriage machine such as the older
model Teletype terminals. Any command  with the exception of
comment lines! may be continued on the next line by simply
terminating the line with a comma. There is no arbitrary limit to
the number of continuation lines for a single command, however,
SIMCON will issue an error message if the command contains more than
l60 characters.

Multiple commands on one line.

MACRO STEP;GO L;DISPLAY WEIGHT LENGTH NET«GROWTH

Attention nterrupts.

Any SZMCQN function may be interrupted by pushing the BREAK key
 on some terminals, this key is marked INTRPT!. This feature is
useful to prevent unwelcome or erroneous output to the terminal or
halt a user's unintended mistake.

More than one command may be entered on one line by separating
the commands with semi-colons  ;!. Users may find that with the
slow CYBER response time, multiple commands should be a speedy way
to execute a sequence of short commands. Macros may also be defined
on one line but with some restrictions. The macro must be
completely specified in the multiple command sequence  continuation
lines may be used!. All the commands of the multiple command
sequence following the MACRO command will become the definition of
the macro. The END command is implied by the end of the command
sequence and should not be explicitly included. Example:



Part EZ. The FORTRAN Programmer 's Guide to SINCON

or

How to Create a FORTRAN Model for SXMCON



SIMCON - A SIMULATION CONTROL LANGUAGE 3l

~System Architecture,

The SIMCON structure has at least three fundamental properties. The
first is that SlMCON is model independent. The model is simply
constructed of the rules of change of the model system from one time
step to the next. SIMCON provides for all input, output, and
intervention needs. A call by SIMCON to the model simulates one time
step i

The third property is that SIMCON performs three functions during
model iteration:

- Variables that the user has specified are displayed as the
simulation proceeds.

- Each state of the model is saved for later reference. Saving the
state of the model means, in this case, that the contents of the
model's blank common block is stored on a random access file.

- And, if a SIMCON command has been defined to intervene at a
particular time step, the command is executed at that point.

The second property is the user's ability to reference all the model
v'ariables during program execution by FORTRAN name. The method is to
locate all the variables the user may wish to view or change in the
blank common block. The user then supplies SIMCQN with a separate file
containing all the declaration statements associated with the variables
in the blank common block. From these statements, SIMCON calculates and
stores variable attributes such as the declaration type, subscript
ranges, and common block displacements for each variable.



32 A User's Guide to SINCON

A user need only provide two files. One file contains the object
code for the model subroutine s! and is named BNODL. The second file
contains FORTRAN declaration statements associated with the model's
blank common block and is named COMMON.

BMODL must contain one subroutine named UNODZL. This subroutine
functions as the main model routine. At the user's option, UNODFL may
reference any number of satellite subroutines. The user may also
reference the utility random number generators provided in the SIMCON
library  see page 43!. All user referenced subroutines except those
pontained in the SZMCON library must be compiled with the main routine
UNODEL and contained within the object file, BMODL. The names of any
user supplied subroutines other than subroutine UNODEL are arbitrary.
Figure 2.1, page 34 demonstrates the correct form of a madel and
associated files prepared for a SXNCON run. SINCON's calling sequence
to subroutine UMODZL is,

CALI UNODEL  ITIMZ!

where ITINE is the current simulation time step.

Other considerations concern named common blocks and a blank common
block more than LOOO words of memory in length. See the CCON routine in
the section tional User Routines, page 36 for details.

The file BNODL may contain optional routines which are referenced by
SINCON rather than the user's model. These may include a one time
initialization routine, one or more user command routines, or the
specialized block length definition routines. These routines are
discussed also in the section 0 tional User Routines.

The COMMON file contains only FORTRAN declaration statements
assoc ia ted wi th the model ' s blank common block. The declaration
statements in the COMMON file must be identical to the blank common
declaration statements as they appear in the user's model and must
conform to the following rules:

l. The CONNOH file must contain all INTEGER, REAL, LOGICAL,
DIMENSION, and COMMON statements that apply to any variable in
the blank common block-

2. The COMMON file may contain ~anl INTEGER, REAL, LOGICAL,
DIMENSION, COMMON, and comment statements.

3. A COMMON statement must be the last statement of the file. The
dimensions of a variable may be given in any declaration
statement, however.



SXMCON - A SIMULATION CONTROI LANGUAGE 33

4. Named common blocks are not permitted.

5. No more than nine continuation cards per statement are
permitted.

6. Arrays of up to four dimensions are permitted although CYSER
FORTRAN permits only three.

The COMMON file is not a program routine but a data input file to
SIMCON used to construct the symbol table. For models with many
variables, this is a costly operation. But, as long as the COMMON file
and the model's blank common block have not been altered> it is not
neccessary for SINCON to read the COMMON file more than once. The SAVE
command can be used to store the constructed symbol table on the scratch
file SYDUMP.  See the SAVE and RESET commands, Part I, page 20.!
Thereafter, during subsequent SZMCON runs with the same model, the file
SYDUMP can be used in lieu of the file COMMON to initialize the system
and symbol table.  See page 40, SZNCON ~Loadin and Execution.!



A User ' s Guide to SINCON

Figure 2.1. The simple logistic growth model demonstrated earlier in
Part I, figure 1.1, page 14. The procedure DEMO performs the neccessary
steps of preparation for SXMCQH execution. Such a procedure is

The model-

SUBROUTINE UNODEL   IT!

LOGISTIC GRGMTH NMEL

CGNNQN POP,R,CARRY, YIELD
C

C THE CLASSICAL LOGISTIC EQUATION

YIELD > R>POP>  CARRY-PGP!/CARRY!
POP * POP 4 fIELD

RETURN

END

SUBROUTINE UINIT
C OPTIONAL USER INITIALIZATION ROUTINE

CONNOTE POP,R,CARRY, YIELD
PGP = 2.

R~.h

CARRY ~ 100.

RETURN

END

C

C A SINPLE
C

C UARIABLE

C POP

C R

C CARRY

C YIELD

C

C

DEF INI T I QNS

CURRENT POPULATION SIZE
INTRINSIC RATE OF INCREASE

CARRYING CAPACITY OF THE SYSTEN
SURPLUS PRODUCTION <ANGUNT OF INCREASE FRQN
THE LAST TINE STEP!



SIMCON - A SINVLATXON CONTROL LANGUAGZ 35

optional. Each s tep may be g iven as individual commands from an
interactive terminal. See page 40 for a general description of the
steps that may be placed in a procedure.

The COMMON f ile  required!

THE USER''S CQlfNQN BLOCK FII.E.

THIS FILE IS HOT A SUB-PROGRAN BUT DAT4 INPUT T<! SI!ICQH.
IT AUST CONTAIH AI.L INTEGER> REAL, LOGICAL, DIHEHSIOH>
AND COltNON STATEHENTS THAT PERTAIH TQ AHY VARIABLE IH THE
BLAHK CQHHON BLOCK. <SIHCQH IS SNART EHQUGM TD IGNORE THFSE

COHNEHTS.!

CON!IQH POP>R>CARRY>YIELD

The BATCH file  optional>

--DE!IOPRO BATCH FILE

--A FILE SIHILAR TO THIS FILE NAY BE EMPLOYED FOR NOBEL
--INITIALIZATION INSTEAD OF OR IN CONJUNCTION IJITH SUBROUTINE
--UIHIT. THIS FILE CONTAINS ONLY CQHHEHTS, HOWEVER, ANY
--SIHCON CQtiHAND COULD BE INCLUDED.
~ ~
..TH!S IS A SINPLE POPULATION GROMTH NOBEL USING
~ .THE CLASSICAL LOGISTIC FUHCTION,
~ ~

BH/DT i RN H-N!/K

~ ~

..VARIABLES

The DEMO procedure  optional!

~ PRQC,DE!IO.
GET,DENQPRO,BATCH=DEHQDAT,CON!ION=DE!IOCQN UN=AA'I	78.
RETURN>BHODL.
FTH> I=DEHQPRO>B"BNQDL>L=O ~
GET>SI!IC,'UH=AAVI7H.
SIHC.

RE>!ERT. SIIICQN DEHQHSTRATIOH READY

~ ~
..PQP

..R

..CARRY

~ .YIELD

CURRENT NUNDER QF ANIH4LS IN THE POP<jL4TIOH <N!
CONSTANT QF PROPORTIONALITY  INTRINSIC RATE QF INCREASE!
THE CARRYING CAPACITY <K!

SURPLUS PRODUCTION, N TiI! - N  i!



36 A User's Guide to SIMCON

~tional User Routines.

One or more optional subroutines may be used. An optional
subroutine must be compiled with the model and contained in the object.
file, BMODL.

Model initialization, subroutine UINIT.

The user subroutine UZNIT may be provided to initialize the
model before simulation begins. The VZNZT subroutine is generally
intended to input initialization data from the file UDATA  assigned
by SIMCON to unit 44! although it may be used to perform any
specialized initialization function. There are no calling
parameters to subroutine UINIT.

Model initialization may also be performed with a command file
named BATCH.  Refer to Part I, Advanced SZMCON Commands, Command
Piles, page 25 and SZNCOE ~Loadin and Execution, page 40. ! This
BATCH f ile when provided bef ore SIMCON initialization, will be
automatically read and executed. Both the subroutine UINIT and a
BATCH file may be used together. SIMCON's initialization sequence
is first to zero the user's blank common block, call the UXMIT
subroutine if one is present, read and execute the BATCH file if one
is present, then place the user in SIMCON command mode.

User command routines.

The user may create command routines to perform specialized
functions. SZMCON provides seven general purpose user commands:
UCOMAN, VCXD2, VCMD3, UCMD4, UCMD5, UCMD6, and UCMD7. Each of these
commands calls a user supplied subroutine of the same name  a user
supplied command subroutine must have one of these names!. A user
command subroutine should have the following structure:

SUBROUTINE UCOMAtl  ZBUFFpLEN!
DIMENSION ZBUFF LEN!

RETURN

END

The integer array XBUFF contains a character image of an optional
user defined parameter list that may be included on the command.
Each array element contains one character, left justified, blank
filled  the character occupies the left most position of the word
followed by nine blanks, i.e. Al format!. LEN is the number of
characters in ZBUFF.



SZMCON - A SIMULATION CONTROL LANGUAGE 37

A SIMCON user command has the general form/

UCOMAN [user defined parameter list3

Clearly, this method of parameter passing can become quite
complicated> however, the parameter list can be used as a
"switching" device without too much difficulty. For instance, a
user might write a command subroutine that will perform one function
from a choice of functions, say, functions l, 2, etc. If the user
gives the command,

UCOMAN 1

the user's UCOMAN subroutine will identify the function type  in
this case, using the fact that IBUFF l! contains the single
character "l"! and branch to the appropriate section of code.

Common block redefinition routines.

Before program execution, the user may redefine the default
sizes of two common blocks, the blank common and a SIMCON named
common which contains SIMCON's all important symbol table.

The blank common. SIMCON predefines the blank common block size
at l000 words of memory. It is important to remember that the blank
common as defined in the user's model does not define the size of
the block during program loading. Therefore, if the user's blank
common block is longer than 1000 words, the user must increase the
blank common block size by supplying the subroutine CCOM within the
BMODL object file. Do not confuse the CCOM subroutine with the

3 3 ' ~ ~, 3
performs an entirely separate function. The CCOM routine should
have the following form:

SUBROUTINE CCOM
COMMON DUMMY n!
RETURN

END

where n is the new common block length in memory words. The COMMON
statement can be the same common statement used in the model, i.e.
all the COMMON statements pertaining to the blank common block  the
other declaration statements are unnecessary!. Otherwise, any dummy
variable can be dimensioned to a suitable length. CCOM should
contain no executable statements other than a RETURN statement.

which results in a single call to the user subroutine UCOMAN and a
character image of the parameter list being placed in the array
IBUFF.



38 A User ' s Guide to SIMCON

If the user employs any named common blocks in the model, the
definition of this block should also be placed in the CCOM routine.

CCOM is force loaded into the primary overlay of the SIMCON
program to ensure that the contents of the common blocks defined in
CCOM are preserved during all phases of SIMCON execution. If the
user provides no CCOM subroutine, the default CCOM with 1000 words
is loaded from the SIMCON library.

The ~s mbol table. The symbol table contains all the attributes
of the model and system variables necessary for the user to
reference the variables by name. The default size of the symbol
table allows for the 34 SIMCON system variables  some of which were
described ia Part I, ~S stem Parameters, page 11! aud a maximum of
6 6 1 1 . ~l» ' l.l 6 6 6 6

a total default block length of 2200 words. If the model has more
than l66 variables in the blank common block or the user intends to
define several variable synonyms during SIMCON execution  each
synonym requires a table entry, see Part I, the NAME command, page
19!, the length of the symbol table must be increased. This is
accomplished by including within the BMODL object file a specialized
block data subprogram named HCOM. HCOM must have exactly the form:

BLOCK DATA HCOM

COMMON /KCC/ MAX,ZNTSIZ,NZNTS,IKDAT n!
DATA MAX/n/
END

where n is the length of the symbol table in words of memory. For
example, to reserve space for 250 model variables, n should be
computed as ll X 250 + ll X 34 ~ 3124 words. Recall that each
vaziable entry requires 11 words and that SIMCON must have space for
its 34 system variables. The value of n in the COMMON statement and
in the DATA statement must agree.



SIMCON � A SIMULATION CONTROL LANGUAGE 39

INPUT unit 5

unit 13DUMP

unit 1B

SUPCOM unit 19

SYDUMP unit 12

unit 44UDATA

unit 45ULOG

unit 46VF ILE

BATCH

COMMON

OUTP UT

TAPE10

unit 1

unit 2

unit 6

unit 10

The last-accessed command file.

The definition file for the blank common
block.

Input f r om an in te r ac tive terminal.

Output to an interactive terminal.

The output file for graphics information to
the central plotters.

The random access file used for storing
model states.

The random access file for the macro
library.

The SIMCON utility common block definition
file.

A scratch file used to store the SIMCON
system state.

Initialization-data input file referenced
by user supplied subroutines.

An alternate output file for PRINT and VIZ%
commands.

The output file for the FILE command.



A User's Guide to SIMCON

BZMCON ~Loadin and Execution.

The following are general descriptions of the necessary and optional
steps to prepare a model for a simulation run. The steps are defined in
the order they should be issued at the terminal.

PTN g I+MYMODZL r B+BMODL r L 0

This will be an optional user created
command file to initialize the model.
If you are not using the BATCH file to
initialize the model, skip this step.

GZT, BATCH~ f i le name

Create a local copy of the blank common
block definition file. Either this file
or the file SYDUMP is required.

GZT, COMMON~ f i lename

If the COMMON file is not, to be used to
initialize the symbol table, create a
local copy of the f ile SYDUMP.  See

p 32.>

GET, SYDUMP~f ilename

GET, S IMC/UN~AAV17M Create a local copy of the procedure
file to load SIMCON.

Load SIMCON. If there are no errors,
proceed.

SIMC

This optional step provides a previously
cr eat ed macr o l ibr ary.   See S IMCON
Macros, page 21.!

GET, MACLIB~ f ilename

This optional step permits you to
examine the resu1ts of a simulation
which had been previously saved.

GZT, DUMP~f ilename

Start SIMCON execution. %hen SIMCON
prompts, enter a command.

S XMCON

Once the model is running correctly, a procedure file can be created
that performs all the steps abave. Such a procedure is shown in figure
Z.l, page 34 and demonstrated in Part I, figure l,l, page 14.

Compile the model
routines to create

BMQDL. If a program
use L filename. If
correct these before

and optional user
the object file,

listing is desired,
there are errors,
continuing.



SZMCON - A SIMULATION CONTROL LANGUAGE 41

Before SIMCON terminates due to a FORTRAN error, SIMCON closes all
f iles thus preserving their integrity. The most impor tant file in this
respect is the DUMP random access file as it is through this file that.
the model can be recovered to the point at which the error occurred.
 The DUMP file is created only if the system parameter fIDUMP is ON.
Refer to Part I, ~Sstem Parameters, page 11.! SZMCON also generates a
catalog of its system variables on the file ULOG which may be helpful.

As a further aid in programming debugging, a model may be compiled
with the CYSZR FORTRAN Post Mortem Dump facility which provides
additional detailed information when FORTRAN errors occur. Consult the
CYBER NOS FORTRAN EXtended VerSiOn 4 ReferenCe Manual far inStruCtiOnS
on the use of the Post Mortem Dump facility.

To restart after a FORTRAN error, begin SZMCON executing again by
repeating the command "SIMCON" to the operating system. Now, at
SZMCON's prompting, enter the command "TIME n" where n is the iteration
year at which the error occurred  this number is provided somewhere
within the error messages!. Now, the model variables associated with
the error can be examined, and presumably, the error located. If
correction of the model program is indicated, quit SIMCON, correct and
recompile the model source code, then repeat SIMCON loading by executing
the SIMC procedure.



42 A User's Guide to SZÃCON

C d' ' AA ' ~A

SUBROUTINE UNODEL  ZTZMZ!

ZF  X .LT. 0.0! GOTO 99 Presume X less than zero is an error.

99 PRXNT*, 'BAD BOO BOO"
CALL ATTN
RETURN

Here is the error exit code of
UMODEL.

Conditional attention interrupts can be used as a program debugging
aid or as an error trapping device. During model iteration, the model
can generate an attention interrupt by calling the SZMCON subroutine
ATTN- SZMCON detects the interrupt condition, immediately stops
iteration, and returns the user to SZMCON command mode. A call to
subroutine ATTN does not in itself cause an exit from the model program;
you must provide the means of exit via a return statement within the
UMODEL subroutine. A suggested method for employing the conditional
interrupt is as follows:



SIMCON � A SIMULATION CONTROL LANGUAGE

The SIMCON ~Utilit ~Librar

Function DRAND  ISTRN,XSED!

generates a uniform random variate in the range �,1!. All
other random number functions call this routine.

a number from l to 6 specifying one of 6 random
number sequences.

XSTRM

dummy argument.ISED

Subroutine DRSET  XSTRM, ISED!

initializes the generator seed for DRAND. Xf DRSKT is not
called, a default seed is provided for each sequence.

a number from l to 6 specifying one of 6 random
number sequences.

XSTHN

used as the generator seed for the random
sequence specified by XSTRN.

ISED

Function UNFRM  RNIN,RNAX, XSTRN!

generates a uniform random variate in the range  RMIN,RNAX! .

RMIN lower bound on the range

upper bound on the range

IS TRN see DRAND

Function TRIAG  RNQDE, RNID, RNAX, ISTRN!

generates a random variate from a triangular distribution in
the range  HNIN> RNAX! .

distribution mode  the peak of the triangle!
necessarily a number within  RMXH, RMAX! ~

ISTRM see DRAND

The following are random number functions available from the SIMCON
utility library  adapted from The GASP ZV Simulation ~Lan ua e, Alan P.
Pritsker!. Users may also use the random number generators supplied by
the FORTRAN library.



A User's Guide to SIMCON

Function RNORM  RI46dLN, RMIN, RMAX,SD, ZSTRM!

generates a random variate from the normal distribution in the
r ange  RMIN < RNAX!,

RMPJL.N distribution mean

standard deviation

ISTRM see DRAND

Function RLOGN  RMEAN, RMIN, RMAX,SD, ZSTRM!

generates a random variate from the log normal distribution in
the range  EXP  RMIN!,EXP  RMAX! !

mean o f the normal d istr ibut ion

lover bound of the range of the normal
distribution

RMIN

upper bound of the range of the normal
distribution

standard deviation of the normal distributionSD

ISTRM see DRAND

. unction ERLANG  BETA, ZMZHA, RMIN, RMAX, ZSTRM!

BETA, ZALPHA are the parameters of the distr ibution. The
product ZALPHA*BETA is the expectation,
IALPHA*BETA+*2 is the variance.

ZSTRM see DRAND

.'unction EXPON  RI&AN, RMIN, RMAX, ISRTM!

generates a random variate from the exponential distribution in
the range  RMIN,RMAX!.

RERAN the distribution mean

ZSTRM see DRAND

generates a random deviate from the Erlang distr ibution  a
Gamma distribution vith a positive integer parameter ZAZPHA! in
the range  RMIN,RMAX! .



SZMCON - A SIMULATION CONTROL LANGUAGE 45

Function NPSSN  KCKJQl, RMZN, RMAX, ISRTM!

generates a random deviate from the Poisson distribution in the
range  RMIN, RMAX! .

Funct ion GAMA  BETA,ALPHA, RMIN, RMAX, ISTRM!

generates a random variate from the Gamma distribution in the
range  RMIN, RMAX! .

BETA, ALPHA are the distribution parameters, the product
ALPHA*BETA is the expectation, ALPHA*BETA"*2 is
the variance.

ZSTRM see DRAND

Function BETA  THETA,PHI,RMZN,RMAX,ISTRM!

generates a random variate from the Beta distribution in the
range  RMIN,RAMX!.

THETA,PHI where the expectation is THETA/ THETA+PHI! and
the variance is
THETA»PHI/  THETA+PHZ!»»2»  THETA+PHI+l!

see DRANDZSTRM

RNE'i@i

ISTRM

the distribution mean

see DRAND



Part III. Error Messages



46

S INCOR ERROR MESSAGES

This is an attempt to document aLl of the messages that SIMCON version

2.7.1 can generate when it is unhappy. Most often the result of these

messages is that the command just issued by the user has caused a problem,

the message is issued and the command is ignored. A couple of errors are

fatal, meaning execution ceases after they are issued. Other errors are

slightly worse in that they require the repair of something and the re-

running of a simulation - an unpleasant thought if there is a lot of CPU

time involved.

The messages are arranged alphabeticalLy as much as possible with

messages not fitting that scheme located at the end of the list. The

narrative about each message contains a description about how it came to be

and so~ suggestions on how possibly to remedy the situation. Some of these

remedies  such as modification of a SILICON subroutine! may be considered

drastic for the casual user. These modifications are mentioned as possible

solutions. However, they should only be undertaken with ext.reme caution

and in close consultation with the SITCOM implementer's Guide. For users

with the determination to find out more about these errors, the subroutine

in which the offensive 4IRITK statement is located is also given. There are

a few occasions where the code was found to be in conflict with the Users

Guide and these points are duly noted.

Hopefully, this addition to the growing body of SIMCOH documentation

will make use of the package a I.ittle less forbidding.



47

"AT" LIST FULL - C HMAND NOT PROCESSED

It is only possible to have 20 AT commands ia effect at any one
time. If this number is exceeded, this message is issued. By the
same token, there is only a finite amount of space  ca 500 packed
characters! allocated for storage of AT commands for use in sub-
routine ATS. If the AT commands the user has defined are very
complex, this space resource may be exhausted before the 20
command limit is reached. User action: If either of the two
constraints mentioned above are too confining, SIMCON may be
modified and recompiled. The operative lines are statement
number l in subroutine ATS for the 20 command limit aad common
block /ATCMDS/ which is initialized in the BLOCK DATA subroutine
for the size constraint. A less drastic way around the size
problem may be to define a macro and use it in conjunction with
an AT command.

SYNTAX NEAR

The user has entered the SET command but there is either no equal
sign on the line or it appears at the end of the line. In either
case, there is little information. content in the line and sub-
routine LOOPER complains. Re-enter the line.

SYNTAX IN MAX~ NEAR

The MAX option in the PLOT command was being exercised but no
maximum value was specified or the value was non-numeric. The
line is reprinted at the end of the message from subroutine
LOOPER. The user should remnter the line.

SYNTAX IN NAME~ NEARBAD

Subroutine LOOPER identified the string "NAME " in the PLOT command
being processed but there was apparently nothing else oa the line.
The line is repeated at the end of the message for the user's
edification. The suggested user action is to omit the "NAME "
string from the PLOT command but do include a variable list oa the
line. The "NAME " convention is not implemented in the SIHCON
version running at OSU, so this message should not appear.

SYNTAX IN RES OF SET GQ&iAND

When using the SET command, various variables are set equal ta
either numerical or logical values. These numerical or logical
values appear on the right-hand side of an equals sign. This error



message occurs because SIMCON  subroutine VGTS! cannot interpret
the right hand side of a SET command. This side must contain
numbers, the strings "ON" or "OFF" or combinations of numbers and
asterisks like FORTRAN DATA statements. Any other characters found
on the right side of SET commands [such as trying to set the contents
of one variable equal to the contents of another variable, SET
PO&iAX POP LO! J will generate this message.

BAD SYNTAX IN TIME COMMAND

The user has requested a reset of the model to a time that is
illegible to SIMCON  subroutine TIMEF! is something other than
digits. User action is to re-enter the command.

COMMAND STACK ERROR

Three conditions emanating from subroutine MASTER, can generate this
error message
l! Attempt was made to take something off stack and bottom got

above top. Then this message would immediately follow message
IRET BASE TOP NW LEN

2! A set of multiple commands was encountered, the first to be
processed, the rest to be added to stack. At this point, the
s tack either became full and was cleared.

3! An intervention command  AT! was taken from the stack and either
caused the stack to overflow  not likely! or the bottom to
exceed the top. Either way stack is cleared and command echoed.

CQSiAND STACK OVERFLOW

This can also occur in one oi two ways:

L! A pop of the stack resulting in a stack full status.
This is logically impossible in STRiGR.

2! A push of the stack resulting in a stack empty status.
This is also logically impossible.

Therefore, a user should not be able to generate this message via
MASTER.

C ÃMAND STACKING ERROR, MACRO EXECUTION ABORTED

Here everything with the macro is fine but when subroutine MACROS
tried to put the macro onto the command stack, the stack was already
full and there was no room for it, Subsequently, the macro was not
performed and the command stack itself was cleared



COMMAND TOO LONG

A command contained on more than one line extended beyond 149
characters The entire command is reprinted and must be reentered
in a shorter version, possibly using macros. Subroutine MASTER
made this complaint.

C MHON STATEMENT �60 CHARACTERS, EXCESS IGNORED

C ÃMON statements are being read  either from CHION or SUPCOM by
subroutine RDSTMT! for the purpose of constructing the symbol table.
Any statement in these files that is composed of too many  !9!
continuation lines, is truncated when the 660 character limit is
exceeded. This does not mean that multiple C %MON, REAL or INTEGER
statements cannot be used. There is no limit to the number of
COMMON statements in the user's common subroutine. So the solution
to this error is multiple statements rather than long, continued
statements.

ERROR IN COMMON BLOCK DRiP FILE I/O AT

Zn processing some sort of a VIEW command, subroutine VWGKT attempted
to get information about a certain variable in a certain year for
which no information was present in the auxiliary dump file. Spec-
ifically, there was no record of the year that appears at the end
of the message. This is a sinister error and hopefully should not
appear.

ERROR MAX21IH SUBSCRIPT EXCKEDED FOR

This error message comes from subroutine STGT which is called when
SKT, DISPLAY, PLOT, UNPLOT, ONSTAT, STATS, VIEW, or PRINT commands
are executed. For this message to be issued, STGT has looked in the
symbol table for the variable in question and found that the original
dimension of the variable in user's blank common is less than the
subscript specified in the command being processed. User should
verify that the blank common definition is in agreement with the
user's intentions.

ERROR NEGATIVE SUBSCRIPT FOR

A negative subscript  which is not allowed in FORTRAN IV! was
deleted by subroutine STGT in the parameter but for any of the
following commands: SET, DISPLAY, PLOT, UNPLOT, ONSTAT, STATS,
VIEW or PRINT. The command will probably be ignored.



50

GENERALLY BAD SYNTAX NEAR

A generally vague message from subroutine STGT because a myriad of
things may have gone wrong to cause its appearance. Probably coming
from a SET, DISPLAY, PLOT, UNPLOT, ONSTAT, STATS, VIEW or PRXNT
command. SIMCON managed to find the variable name in the parameter
list but the subscript s! associated with it were generally garbled.
They were non-numeric or something equally obtuse. User should
re-enter command.

EXCEEDED MAXIMUM SAVED STATED, 100 MODEL STATES RETAINED

This is an insidious problem. Only 100 model states can be saved
because of size limitations. However, the user is not made aware
of this until the last iteration of the model  when 8IYEAR tJYEND
by subroutine RTSTUF! by which time numerous iterations of the model
may have occurred. These results are inaccessible to VIEW, GRAPH,
PRINT, etc. commands. 1rom a cost standpoint the user should
evaluate

 fIYEND � 8XYBEG! j 4NYSKIP

before using the SIMULATE command so that CPU time is not wasted
on inaccessible results. Xf more than 100 years are to be simulated,
do the simulation in sets of 100 years or modify PNYSKXP.

IDQiP MUST BE ON FOR TIME COMMAND

This message is issued by subroutine TIMEF and is issued when a
TINE i command is encountered. This is an attempt by the user to
reset the model to a previous state by resetting the content of users
common block to some pre-existing state. These pre-existing states
are stored at each model iteration on an auxiliary file  unit l3!
but only if flag 8IDUMP is on  set to 1!. If k'IDUMP is not on, the
previous model states have not been saved and there is no point in
returning to them. User action: DXSPLAY PXDUMP to see that it is
set to 1, if it isn' t, SET PIDUMP l.

IDQiP MUST BE ON FOR USE OF THE VIEW C HMAND

Any VIEW, PRINT, GRAPH, GET or FILE command processed by VXEWX use
of the contents of the auxiliary file that maintains a history of
the model states. If this file has not been filled �XDkMP~O!,
these commands have no meaning. That is the information content of
this message. In order to use these commands, the user must SET
PDUMP~l and repeat the SIMULATE command.



5l

IDlMP NOT SKT ON

The flag 8IDUMP shows whether the variables in the user's blank
common block are being stored at every time step. If they are beiag
s tored �IDQiP 1!, then statistical analysis can be performed by
subroutine STATS. If they are not being stored in an auxiliary file,
no analysis can be performed.. User action is to DISPLAY IIDUMP and
if it is not on, SET ifIDlKP~l.

ILLEGAL SYNTAX

Several ways of gettiag this message from subroutine NAMVAR:
1! Three words must be entered when using the NAME command. If

more or fewer words are used, this message results.
2! Arrays, or portions of arrays may also be renamed but this

command must be able to finn cne parentheses aad translate what
is inside of them into standard FORTRAN or SINCON jargon. If
the subscripts cannot be interpreted correctly, then this
message is issued. Negative subscripts are also flagged by
this message.

INTERNAL PARAMETER ERROR

In working its way around the "FROM" and "TO" character strings in
the SIMULATE command, subroutine SIMLT got lost. Oae remedy of this
might be to eater the command again but leave out "FR Ã" and "TO".
If this does not work, the user may try various combiaations of the
TINE i, SIMULATE i, or SET ii'IYEAR commands to achieve the desired
r esul ts.

INTERVAL BOUNDS IMPROPER

If the optional LO and EI bounds were specified ia the STATS command
but LO HI, this message is issued by STATS. The number of
variables for statistical analysis is set to zero and the OSTAT flag
is turned off, effectively negating the command User should reenter
the comand making sure LO   HI.

IRET BASE TOP HH LEN
ii fl>Mii ik>!M8 Pb48t PtiISP

Commands to be executed by SIMCON are loaded onto a stack, building
up until they are executed. There are pointers that "manage" the
stack by pointing to the next command to be performed  TOP! and the
bottom of the stack  BASK!. This message is issued when somehow the
pointer for TOP is below the pointer BASE. This error is generated
by subroutine STEMGR.



52

KEY-WORD TOO LONG,

Key words are only allowed to be 10 characters in length. Exceeding
this stipulation results in this message by subroutine MAGROS.

KEY-WORD UNKNOWN,

Use of the order independent form of a macro with a keyword that does
not correspond to the keyword used when the macro was established
diagnosed by subroutine MACROS. Recommended action - redefine macro
with keywords user can remember.

MACRO BUFFER OVERFLOW, MACRO TOO LARGE

Two possible methods of generation  both from subroutine MACROS!:
1! A macro can only contain so much information  either commands

or parameters!. If that amount �00 packed characters! is
exceeded. at the time of building, this message is issued and
the macro is not constructed.

2! Macros can also contain key-words that are substituted when the
macro is executed. The size limit still holds however. If a
short keyword was used in the macro's definition, say X and was
later substituted with the variable name BAROMETRIC-PRESSURE,
these kinds of difficulty may arise.

MACRO LIBRARY ALREADY PULL

SIMCON is configured to allow for 64 unique macros that means re-
defining an existing macro still counts as only one. If a macro is
being defined and this number is exceeded, this message is generated
by subroutine MACROS which maintains the dictionary. Solution:
rename an existing macro or modify the entries in common block /MET/
defined in BLOCK DATA.

MACRO NAME TOO LONG

The macro encountered either had a blank as its first character or
was longer than 21 characters when it is being defined. Subroutine
MASTER will complain about either of these situations and the user
is reminded of the maximum length of a macro name of 21 characters.



53

MACRO NOT FOUND

A CALL <macname! was executed and the macro had not yet been defined.
Subroutine MASTER consulted the dictionary of macros and did not
find the macro in question. The user must define the macro in the
manner set forth on p. 2l of the Users Guide.

MAXIMUM SUBSCRIPT EXCEEDED FOR

Subroutine NAMVAR has checked the symbol table for the variable
receiving the synonym and knows the number of its subscripts and the
maximum size of those subscripts. If the user has attempted to
access a nonmxistent subscript or a subscript value of the array
that exceeds its dimensioned size, this message is printed along
with the array name in question. User must refer to original array
declaration in the common definition file  unit 2! ~

CQ4KAND EXCEEDS MAXIMUM, C ÃMAND NOT ALLOWEDNEW

There is room provided for 45 commands in SIMCON. 34 of these
commands are pre-defined i.e., GRAPH, VIEW, TIME, etc. This means
that there is room for ll substitutions via subroutine NAMED.
Understand that using C MMAND to rename a SIMCON conand does not
make the original command obsolete; it can be referenced now in
two ways. Therefore, this message will appear on the twelfth
issuance of CQQiAND. User action can only be to revert to macros
at this stage for redefining commands.

NAMK A~Y USEDNEW

NO CLOSING PARENTHESIS IN CCMMON STATEMENTS
RECORD CAUSING ERROR WAS

In attempting to read either the user's blank common from file COMMON
or SIMCON's /SUPCOM/ common block from file SUPC K, the subroutine
CMREAD found an error. An array was defined in the common block
without a closing parenthesis ~ These files should be reexamined to
find the error.

This message can only be issued when a condition is met that should
terminate SIMCON before the message is issued. If this message
appears, the program does not function as the documenter assumes.
This error should be brought to the attention of a systems programmer.



54

NO SIMULATION RECORD FOUND

The current year is less than or equaL to the beginning year
 implying no SIMULATE-type command has been issued! or the value
of 8NYSKIP is negative. Any of these situations make the use of
VIEW, PRINT, GRAPH, GET or FILE connnands processed by VIEWX non-
sensical. Some simulation needs to have taken place prior to
exatnination of results from that simuLation.

NO SIMULATION RECORD FOUND FOR TIME

User specified a time that was not saved on unit 13 probably because
it did not fall within the bounds of a previous SIMULATE command  or
there was no previous SIMULATE command!. Subroutine TIMEF diagnosed
thi.s. User can DISPLAY PIYBEG and OIYEND and. adjust the value of the
TIME command accordingly.

NO VARIABLE LIST

Subroutine STATS noticed that the STATS command was followed by
nothing. The user must specify for what variables statistical
analysis is desired. The ONSTAT command followed by nothing dis-
conti. nues statistical analyses and should not issue this message.

OLD C MtiAND NOT FOUND

The user is trying to rename a SIMCON command but the SIMCON command
specified for renaming does not exist  or at least NAMCMD could not
fi.nd it!. User action: reenter the line with proper spelling.

ONLY 10 VARIABLES REPORTED UPON

The STATS/ONSTAT commands will handle statistical analyses for only
10 variables at a time through subroutine STATS. The definition of
variable here is simple variables and array elements. Therefore if
the user wanted statistics on POP � ' ..11!, this error message would
occur. There does not appear to be any stipulation against mere1,y
splitting more than 10 variables up among more than one STATS/ONSTAT
command. In this case, the hypothetical user above could issue two
STATS commands and achieve the desired results  if not quite so
elegantly!.

OLD NAME NOT FOUND

The variable name to which the user is trying to attach a synonym
in subroutine NAMVAR, is not in the symboL table.



PARAMETER ERROR

Issued because of a bad COMMAK! statement by subroutine NAMCMD.
There were fewer than three words found in the command. Recheck
the statement entered and re-enter paying special attention to
spacing  one space separating C MNAND from  oldname> from  newname>!.

PLOT Q FULL � CAN'T ENTER

Contrary to the SIMCON Users Guide, the plot queue can only contain
10 variables, if this limit is exceeded, this message is issued along
with the name of the variable attempting to enter the queue. The
variable of interest can be added to the plot queue but only at the
expense of some other variable which must be UNPLOTted first. If the
limit of IO variables is too confining, subroutine RPUTS2  which
issued the message! can be edified to allow more variables as well
as a host of array redimensionings in common bLock /SUPCQi/  see
page B6 of Implementer's Guide!.

READ CIMMAND UNAVAILABLE

A READ command was processed resulting in a call to subroutine �iDFIL
which, in the general release of SIMCON, is a dummy subroutine. The
subroutine's purpose in life is to issue this message to the user
and return. To allow execution of command files that are not Local
files titled BATCH, this subroutine must be modified  see p l2 of
Implementation Guide!. This routine is complete in the OSU version
of SIMCON so this message should not appear.

SIMULATION "FR R" TIME INVALID

The string following FR M in the SIMULATE command was non-numeric
according to subroutine SIMLT. Re-enter line. Note as long as it
is a number, even a very small one, this message will not be
delivered.

SIMULATION "TO" TIME INVALID

Multiple ways to get thi.s message all in subroutine SIMLT:
I! The value appearing in con!unction with the CONTINUE command

was unintelligible to SIMCON. Remnter line.
2! Using the SIMULATE TO � version of the command, the value

was either non-numeric or negative. Simulating backward in
time is not a valid operation in SIMCON. Remnter line.

3! Using the SIMULATE FROM � TO -- version of the command, the
value for TO could not be di.stinguished by SIMCON. Re-enter
line.



56

4! When this message is issued after the GO command, the value
of the increment was either non-numeric or was negative. That
trick won't work with this command either. Re-enter line.

STACK MANAGER ERROR

When attempting to execute an AT command at the time specified by
the AT definition, subroutine ATS invoked the stack manager. The
command string following the AT was loaded onto the command stack
but the command stack was filled in the process and consequently
the command stack was cleared.

SYNTAX ERROR IN "AT" G MNAND

SET TO SINGE MODEL STATES WERE SAVED EVERY TETE STEPST IME

This is not really an error message. TIMEF is informing the user
that SIMGON could not comply with their wishes precisely. This
may come about perhaps by requesting TIME be set to an odd numbered
year when the simulation was begun on an even numbered year with
O'NYSKIP 2. In this case TIME would be set to the next lower year.
User action: if user is desperate to set time to that specified,
f/NYSKIP may be reset or the beginning year of the simulation may
be reset. In either case, the simulation must be redone.

TIME LESS THAN "FROM" TIME IN SIMULATE CQ9fAND

SIMLT has diagnosed a proble~. When using SIMULATE, the time to
simulate to, must be greater than the time at which the simulation
was begun  FROM!. When using CONTINUE, the value used must be
greater than the current year. Check 8IYEAR and reset it if neces-
sary to get to the year stipulated in the CONTINUE command, but
don't try to go backwards in time.

This error is generated when an AT command is processed by subroutine
ATS. The complaint here is that the second word in the line is not
one of the following: a number  representing time!, ALL, LIST, or
CLEAR. Those are the only entities that are allowed to follow AT
in a command line.



!, ONLY 100 USEDTOO MANY DISAP PERIODS  

SIMGON will only store results of a simulation for 100 times inter-
vals When an attempt is made to VIEW, PRINT, GRAPH, GET or FILE a
variable list through subroutine VIEWX and there are more than 100
intervals, this message appears. The number of intervals is in
integer arithmetic. If a simulation is to run for less than 100
years, this should not be a problem. Zf a simulation is to run
longer than 100 years, some adjustment will have to be made to
PNYSKIP with its inherent loss of resolution to circumvent this
error or the simulation could take place in sets of 100 years.

UNABLE TO INTITALIZE BECAUSE THE C %MON FILE IS ABSENT
SYSTEM DQfP FILE EMPTY OR BAD, CANNOT RESET

Use of the RESET command may also generate the second line of this
message. This is an attempt to restore the system state to that
saved by the SAVE command. SIMGON's complaint here is that no SAVE
was done, consequently SYDUMP doesn't exist and a RESET cannot be
accomplished.

UNDETERiINED TYPE IN C MHON FILE.
RECORD CAUSING ERROR WAS

This error is caused by subroutine QiREAD of the first character
in a line is not an I  for INTEGER!, L  for LOGICAL!, R  for REAL!,
C  for CQ9iON!, or D  for DIMENSION!. A command line that contains
no blanks also generates this error. The offensive line will be
echoed so the error can be identified.

This is an initialization failure message issued by subroutine INIT.
One of the first things SILICON needs to do is build the symbol table
which is referred to often. The conventional way of building this
is through access to the file G MNON  p. 32 of Users Guide!. If the
file is not present, SINCON can reconstruct the symbol table from the
file SYDIÃP which may have been created in a previous SINCON run
using the SAVE command  p. 20, Users Guide!. If neither of these
f iles are present, this error message is generated. The remedy may
be as simple as making one of these two files local  CYBER's /GET
command! or as difficult as building the CROON file of the user's
variables to be included in the symbol table.



UNKNOWN CQ9iAND

Two sources for this message from subroutine HASTER:
1! The command being processed was not an ordinary SIHCON command.

It was checked against the macro dictionary and found lacking
there too, or macro library empty.

2! The command has been identified as being a system command
 haviag a $ in the first position!. This gives user access
to installation commands outside SIHCON. Issuance of this
error message implies that provision was not made for the
particular system command entered in SUBROUTINE SYSCHD. This
subroutine is user-defined and appears as a dummy in the general
release version of SIHCON.

WRONG ABER OF ARGQfENTS FOR SIHULATE COHMAND

Subroutine S24{.T is unhappy.
There are several forms of the SIHULATE command. It can be as simple
as SIHULATE which sets SIYEAR~PIYBEG, to as complex as SIHULATE FROH
1980 to 2000 with intermediate forms leaving out the words FROH aad
TO or having only one year value. But that's it. Adding more to the
command than its most complex form above will generate aa error.

One word of caution. The command SIHULATE FROH 10 is interpreted as
taking the model from the current value of IIYEAR to 10, if that is
a positive direction. The word FROH is not expressly noticed by
SILICON so it woa't straighten out any confusioa. It assumes the
users know what they are doing.

*** C NHON TABLE SIZE EXCEEDED

The symbol table size has been exceeded. SIHCON cannot keep track
of as many variables as the user wishes. Either reduce number of
variables or write a BLOCK DATA subroutine titled HC&i as described
oa p. 38 of User's Guide to allow for storage of more variables.
This maximum limit i.s, of course, machine dependent, but on the
CYBER this number is 200 variables  see p. B3 of Implimenter's
Guide for more detail!. Generated by subroutine ENTk.

$ ClMHANDS NOT AVAILABLE

A call issued to subroutine SYSQfD whenever a command is processed
that contains a $ as the first character. In the general release of
SIHCON, SYSCHD is a dummy subroutine containing only the statemeat
generating in this message. This subroutine is fuactional in the
OSU installation so this error should not appear.



59

WAS NOT FOUND IN CGHMON

A variable in the parameter list of SET, DISPLAY, PLOT, UNPLOT,
ONSTAT, STATS, VIEW, or PRINT was not found in the symbol table by
subroutine STGT User should check the blank common block to see
that all pertinent varibles have been included there.

NOT IN QUEUE

An attempt was made to UNPLOT a variable that was not in the plot
queue. Clever, but subroutine LOOPER was not fooled. DISPLAYing
4NPLOT will show the user how many variables are in the queue but
the user must keep track of what they are.




